微分積分学準備 例

平均変化率を求める f(x)=( x^2-1)/x , 1<=x<=7の平方根
,
ステップ 1
を方程式で書きます。
ステップ 2
平均変化率の公式を利用して代入します。
タップして手順をさらに表示してください…
ステップ 2.1
関数の平均変化率は、2点の値の変化を2点の値の変化で割ることで求めることができます。
ステップ 2.2
に代入し、関数のを対応する値に置換します。
ステップ 3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
で割ります。
ステップ 3.2
分数の分子と分母にを掛けます。
タップして手順をさらに表示してください…
ステップ 3.2.1
をかけます。
ステップ 3.2.2
まとめる。
ステップ 3.3
分配則を当てはめます。
ステップ 3.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.4.1
共通因数を約分します。
ステップ 3.4.2
式を書き換えます。
ステップ 3.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.1
乗します。
ステップ 3.5.2
からを引きます。
ステップ 3.5.3
に書き換えます。
タップして手順をさらに表示してください…
ステップ 3.5.3.1
で因数分解します。
ステップ 3.5.3.2
に書き換えます。
ステップ 3.5.4
累乗根の下から項を取り出します。
ステップ 3.5.5
1のすべての数の累乗は1です。
ステップ 3.5.6
からを引きます。
ステップ 3.5.7
に書き換えます。
ステップ 3.5.8
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.5.9
を掛けます。
タップして手順をさらに表示してください…
ステップ 3.5.9.1
をかけます。
ステップ 3.5.9.2
をかけます。
ステップ 3.5.10
をたし算します。
ステップ 3.6
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 3.6.1
をかけます。
ステップ 3.6.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 3.6.2.1
をかけます。
ステップ 3.6.2.2
をかけます。
ステップ 3.6.3
からを引きます。
ステップ 3.7
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.7.1
で因数分解します。
ステップ 3.7.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.7.2.1
で因数分解します。
ステップ 3.7.2.2
共通因数を約分します。
ステップ 3.7.2.3
式を書き換えます。
ステップ 4
結果は複数の形で表すことができます。
完全形:
10進法形式: