微分積分学準備 例

平均変化率を求める P(t)=(600t)/(3t^2+4)
ステップ 1
差分係数の公式を考えます。
ステップ 2
決定成分を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
で関数値を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
式の変数で置換えます。
ステップ 2.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.1
に書き換えます。
ステップ 2.1.2.1.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.2.1
分配則を当てはめます。
ステップ 2.1.2.1.2.2
分配則を当てはめます。
ステップ 2.1.2.1.2.3
分配則を当てはめます。
ステップ 2.1.2.1.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.3.1.1
をかけます。
ステップ 2.1.2.1.3.1.2
をかけます。
ステップ 2.1.2.1.3.2
をたし算します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.3.2.1
を並べ替えます。
ステップ 2.1.2.1.3.2.2
をたし算します。
ステップ 2.1.2.1.4
分配則を当てはめます。
ステップ 2.1.2.1.5
をかけます。
ステップ 2.1.2.2
最終的な答えはです。
ステップ 2.2
決定成分を求めます。
ステップ 3
成分に代入します。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.1
を公分母のある分数として書くために、を掛けます。
ステップ 4.1.2
を公分母のある分数として書くために、を掛けます。
ステップ 4.1.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 4.1.3.1
をかけます。
ステップ 4.1.3.2
をかけます。
ステップ 4.1.3.3
の因数を並べ替えます。
ステップ 4.1.4
公分母の分子をまとめます。
ステップ 4.1.5
因数分解した形でを書き換えます。
タップして手順をさらに表示してください…
ステップ 4.1.5.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1.5.1.1
で因数分解します。
ステップ 4.1.5.1.2
で因数分解します。
ステップ 4.1.5.1.3
で因数分解します。
ステップ 4.1.5.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 4.1.5.2.1
分配則を当てはめます。
ステップ 4.1.5.2.2
分配則を当てはめます。
ステップ 4.1.5.2.3
分配則を当てはめます。
ステップ 4.1.5.3
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.5.3.1
積の可換性を利用して書き換えます。
ステップ 4.1.5.3.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.5.3.2.1
を移動させます。
ステップ 4.1.5.3.2.2
をかけます。
タップして手順をさらに表示してください…
ステップ 4.1.5.3.2.2.1
乗します。
ステップ 4.1.5.3.2.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 4.1.5.3.2.3
をたし算します。
ステップ 4.1.5.3.3
の左に移動させます。
ステップ 4.1.5.3.4
積の可換性を利用して書き換えます。
ステップ 4.1.5.3.5
の左に移動させます。
ステップ 4.1.5.4
分配則を当てはめます。
ステップ 4.1.5.5
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.5.5.1
積の可換性を利用して書き換えます。
ステップ 4.1.5.5.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.5.5.2.1
を移動させます。
ステップ 4.1.5.5.2.2
をかけます。
ステップ 4.1.5.5.3
積の可換性を利用して書き換えます。
ステップ 4.1.5.5.4
をかけます。
ステップ 4.1.5.6
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.5.6.1
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.5.6.1.1
を移動させます。
ステップ 4.1.5.6.1.2
をかけます。
タップして手順をさらに表示してください…
ステップ 4.1.5.6.1.2.1
乗します。
ステップ 4.1.5.6.1.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 4.1.5.6.1.3
をたし算します。
ステップ 4.1.5.6.2
をかけます。
ステップ 4.1.5.6.3
積の可換性を利用して書き換えます。
ステップ 4.1.5.6.4
をかけます。
ステップ 4.1.5.6.5
をかけます。
ステップ 4.1.5.7
からを引きます。
ステップ 4.1.5.8
をたし算します。
ステップ 4.1.5.9
からを引きます。
ステップ 4.1.5.10
をたし算します。
ステップ 4.1.5.11
からを引きます。
タップして手順をさらに表示してください…
ステップ 4.1.5.11.1
を移動させます。
ステップ 4.1.5.11.2
からを引きます。
ステップ 4.1.5.12
で因数分解します。
タップして手順をさらに表示してください…
ステップ 4.1.5.12.1
で因数分解します。
ステップ 4.1.5.12.2
で因数分解します。
ステップ 4.1.5.12.3
で因数分解します。
ステップ 4.1.5.12.4
で因数分解します。
ステップ 4.1.5.12.5
で因数分解します。
ステップ 4.2
分子に分母の逆数を掛けます。
ステップ 4.3
まとめる。
ステップ 4.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.4.1
共通因数を約分します。
ステップ 4.4.2
式を書き換えます。
ステップ 4.5
をかけます。
ステップ 4.6
で因数分解します。
ステップ 4.7
に書き換えます。
ステップ 4.8
で因数分解します。
ステップ 4.9
で因数分解します。
ステップ 4.10
で因数分解します。
ステップ 4.11
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.11.1
に書き換えます。
ステップ 4.11.2
分数の前に負数を移動させます。
ステップ 5