微分積分学準備 例

平均変化率を求める f(x)=2(5/2)^(-x)
ステップ 1
差分係数の公式を考えます。
ステップ 2
決定成分を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
で関数値を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
式の変数で置換えます。
ステップ 2.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
分配則を当てはめます。
ステップ 2.1.2.2
積の法則をに当てはめます。
ステップ 2.1.2.3
をまとめます。
ステップ 2.1.2.4
最終的な答えはです。
ステップ 2.2
決定成分を求めます。
ステップ 3
成分に代入します。
ステップ 4
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
を公分母のある分数として書くために、を掛けます。
ステップ 4.2
を公分母のある分数として書くために、を掛けます。
ステップ 4.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 4.3.1
をかけます。
ステップ 4.3.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.3.2.1
べき乗則を利用して指数を組み合わせます。
ステップ 4.3.2.2
からを引きます。
ステップ 4.3.3
をかけます。
ステップ 4.3.4
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 4.3.4.1
べき乗則を利用して指数を組み合わせます。
ステップ 4.3.4.2
からを引きます。
ステップ 4.4
公分母の分子をまとめます。
ステップ 4.5
因数分解した形でを書き換えます。
タップして手順をさらに表示してください…
ステップ 4.5.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 4.5.1.1
で因数分解します。
ステップ 4.5.1.2
で因数分解します。
ステップ 4.5.1.3
で因数分解します。
ステップ 4.5.2
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 4.5.2.1
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 4.5.2.1.1
で因数分解します。
ステップ 4.5.2.1.2
を掛けます。
ステップ 4.5.2.1.3
共通因数を約分します。
ステップ 4.5.2.1.4
式を書き換えます。
ステップ 4.5.2.2
で割ります。
ステップ 4.6
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.6.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.6.1.1
分配則を当てはめます。
ステップ 4.6.1.2
をかけます。
ステップ 4.6.1.3
を掛けます。
タップして手順をさらに表示してください…
ステップ 4.6.1.3.1
をかけます。
ステップ 4.6.1.3.2
をかけます。
ステップ 4.6.2
をたし算します。
ステップ 4.6.3
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.6.3.1
分配則を当てはめます。
ステップ 4.6.3.2
をかけます。
ステップ 4.6.3.3
を掛けます。
タップして手順をさらに表示してください…
ステップ 4.6.3.3.1
をかけます。
ステップ 4.6.3.3.2
をかけます。
ステップ 4.6.4
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 4.6.4.1
をたし算します。
ステップ 4.6.4.2
をたし算します。
ステップ 4.6.5
をたし算します。
ステップ 5