微分積分学準備 例

漸近線を求める y=((x+3)(x-4)(x+7))/(x-4)
ステップ 1
が未定義である場所を求めます。
ステップ 2
垂直漸近線は無限が不連続になる場所で発生します。
垂直漸近線がありません
ステップ 3
が分子の次数、が分母の次数である有理関数を考えます。
1. のとき、x軸は水平漸近線です。
2. のとき、水平漸近線は線です。
3. のとき、水平漸近線はありません(斜めの漸近線があります)。
ステップ 4
を求めます。
ステップ 5
なので、水平漸近線はありません。
水平漸近線がありません
ステップ 6
多項式の割り算を利用して斜めの漸近線を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
多項式を分割します。すべての指数に項がない場合、の値の項を挿入します。
-+--
ステップ 6.2
被除数の最高次項を除数の最高次項で割ります。
-+--
ステップ 6.3
新しい商の項に除数を掛けます。
-+--
+-
ステップ 6.4
式は被除数から引く必要があるので、の符号をすべて変更します。
-+--
-+
ステップ 6.5
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
-+--
-+
+
ステップ 6.6
元の被除数から次の項を現在の被除数に引き下げます。
-+--
-+
+-
ステップ 6.7
被除数の最高次項を除数の最高次項で割ります。
+
-+--
-+
+-
ステップ 6.8
新しい商の項に除数を掛けます。
+
-+--
-+
+-
+-
ステップ 6.9
式は被除数から引く必要があるので、の符号をすべて変更します。
+
-+--
-+
+-
-+
ステップ 6.10
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
+
-+--
-+
+-
-+
+
ステップ 6.11
元の被除数から次の項を現在の被除数に引き下げます。
+
-+--
-+
+-
-+
+-
ステップ 6.12
被除数の最高次項を除数の最高次項で割ります。
++
-+--
-+
+-
-+
+-
ステップ 6.13
新しい商の項に除数を掛けます。
++
-+--
-+
+-
-+
+-
+-
ステップ 6.14
式は被除数から引く必要があるので、の符号をすべて変更します。
++
-+--
-+
+-
-+
+-
-+
ステップ 6.15
記号を変更した後、乗算多項式から最後の被除数を加えて新しい被除数を求めます。
++
-+--
-+
+-
-+
+-
-+
ステップ 6.16
余りがなので、最終回答は商です。
ステップ 6.17
斜めの漸近線は、筆算での除算の結果の多項式部分です。
ステップ 7
すべての漸近線の集合です。
垂直漸近線がありません
水平漸近線がありません
斜めの漸近線:
ステップ 8