問題を入力...
微分積分学準備 例
ステップ 1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2
ステップ 2.1
をで因数分解します。
ステップ 2.1.1
をで因数分解します。
ステップ 2.1.2
をで因数分解します。
ステップ 2.1.3
をで因数分解します。
ステップ 2.1.4
をで因数分解します。
ステップ 2.1.5
をで因数分解します。
ステップ 2.2
因数分解。
ステップ 2.2.1
たすき掛けを利用してを因数分解します。
ステップ 2.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 2.2.2
不要な括弧を削除します。
ステップ 2.3
の各項をで割り、簡約します。
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
ステップ 2.3.2.1
の共通因数を約分します。
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
式を書き換えます。
ステップ 2.3.2.2
の共通因数を約分します。
ステップ 2.3.2.2.1
共通因数を約分します。
ステップ 2.3.2.2.2
式を書き換えます。
ステップ 2.3.2.3
の共通因数を約分します。
ステップ 2.3.2.3.1
共通因数を約分します。
ステップ 2.3.2.3.2
をで割ります。
ステップ 2.3.3
右辺を簡約します。
ステップ 2.3.3.1
との共通因数を約分します。
ステップ 2.3.3.1.1
をで因数分解します。
ステップ 2.3.3.1.2
共通因数を約分します。
ステップ 2.3.3.1.2.1
をで因数分解します。
ステップ 2.3.3.1.2.2
共通因数を約分します。
ステップ 2.3.3.1.2.3
式を書き換えます。
ステップ 2.3.3.2
をで割ります。
ステップ 3
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法: