問題を入力...
微分積分学準備 例
ステップ 1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2
ステップ 2.1
方程式の両辺からを引きます。
ステップ 2.2
の各項をで割り、簡約します。
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
ステップ 2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 2.2.2.2
の共通因数を約分します。
ステップ 2.2.2.2.1
共通因数を約分します。
ステップ 2.2.2.2.2
をで割ります。
ステップ 2.2.3
右辺を簡約します。
ステップ 2.2.3.1
との共通因数を約分します。
ステップ 2.2.3.1.1
をで因数分解します。
ステップ 2.2.3.1.2
の分母からマイナス1を移動させます。
ステップ 2.2.3.2
式を簡約します。
ステップ 2.2.3.2.1
をに書き換えます。
ステップ 2.2.3.2.2
にをかけます。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
ステップ 4.1
をで因数分解します。
ステップ 4.1.1
をで因数分解します。
ステップ 4.1.2
をで因数分解します。
ステップ 4.1.3
をで因数分解します。
ステップ 4.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4.3
がに等しいとします。
ステップ 4.4
をに等しくし、を解きます。
ステップ 4.4.1
がに等しいとします。
ステップ 4.4.2
についてを解きます。
ステップ 4.4.2.1
方程式の両辺からを引きます。
ステップ 4.4.2.2
の各項をで割り、簡約します。
ステップ 4.4.2.2.1
の各項をで割ります。
ステップ 4.4.2.2.2
左辺を簡約します。
ステップ 4.4.2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 4.4.2.2.2.2
をで割ります。
ステップ 4.4.2.2.3
右辺を簡約します。
ステップ 4.4.2.2.3.1
の分母からマイナス1を移動させます。
ステップ 4.4.2.2.3.2
をに書き換えます。
ステップ 4.4.2.2.3.3
にをかけます。
ステップ 4.5
最終解はを真にするすべての値です。
ステップ 5
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法: