問題を入力...
微分積分学準備 例
ステップ 1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2
方程式の両辺からを引きます。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
方程式の両辺にを足します。
ステップ 5
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 6
ステップ 6.1
方程式の両辺にを足します。
ステップ 6.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 6.3
を簡約します。
ステップ 6.3.1
をに書き換えます。
ステップ 6.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 6.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 6.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 6.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 6.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 7
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 8