微分積分学準備 例

定義域を求める ((x-y)^2)/(2xy+6y)*(4x+12)/(x^2-y^2)
ステップ 1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式の両辺からを引きます。
ステップ 2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.1.2
式を書き換えます。
ステップ 2.2.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1
共通因数を約分します。
ステップ 2.2.2.2.2
で割ります。
ステップ 2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1.1
で因数分解します。
ステップ 2.2.3.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1.2.1
で因数分解します。
ステップ 2.2.3.1.2.2
共通因数を約分します。
ステップ 2.2.3.1.2.3
式を書き換えます。
ステップ 2.2.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1
共通因数を約分します。
ステップ 2.2.3.2.2
で割ります。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
について解きます。
タップして手順をさらに表示してください…
ステップ 4.1
方程式の両辺にを足します。
ステップ 4.2
指数が等しいので、方程式の両辺の指数の底は等しくなければなりません。
ステップ 4.3
について解きます。
タップして手順をさらに表示してください…
ステップ 4.3.1
絶対値の項を削除します。これにより、なので方程式の右辺にができます。
ステップ 4.3.2
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 4.3.2.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.3.2.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.3.2.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 5
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法: