代数学準備 例

割ります ((2y^2-5y-3)/(2y^2-3y-2))/((y^2-2y-3)/(y^2-y-2))
ステップ 1
分子に分母の逆数を掛けます。
ステップ 2
群による因数分解。
タップして手順をさらに表示してください…
ステップ 2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 2.1.1
で因数分解します。
ステップ 2.1.2
プラスに書き換える
ステップ 2.1.3
分配則を当てはめます。
ステップ 2.1.4
をかけます。
ステップ 2.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.2
各群から最大公約数を因数分解します。
ステップ 2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 3
群による因数分解。
タップして手順をさらに表示してください…
ステップ 3.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 3.1.1
で因数分解します。
ステップ 3.1.2
プラスに書き換える
ステップ 3.1.3
分配則を当てはめます。
ステップ 3.1.4
をかけます。
ステップ 3.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
前の2項と後ろの2項をまとめます。
ステップ 3.2.2
各群から最大公約数を因数分解します。
ステップ 3.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1
共通因数を約分します。
ステップ 4.2
式を書き換えます。
ステップ 5
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 5.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 5.2
この整数を利用して因数分解の形を書きます。
ステップ 6
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 6.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 6.2
この整数を利用して因数分解の形を書きます。
ステップ 7
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.1
共通因数を約分します。
ステップ 7.2
式を書き換えます。
ステップ 8
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.1
共通因数を約分します。
ステップ 8.2
式を書き換えます。
ステップ 9
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 9.1
共通因数を約分します。
ステップ 9.2
式を書き換えます。