代数学準備 例

平方根の性質を利用して解く 8x^2-2x-30=0
ステップ 1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1
で因数分解します。
ステップ 1.2
で因数分解します。
ステップ 1.3
で因数分解します。
ステップ 1.4
で因数分解します。
ステップ 1.5
で因数分解します。
ステップ 2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
の各項をで割ります。
ステップ 2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
共通因数を約分します。
ステップ 2.2.1.2
で割ります。
ステップ 2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
で割ります。
ステップ 3
二次方程式の解の公式を利用して解を求めます。
ステップ 4
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1.1
乗します。
ステップ 5.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 5.1.2.1
をかけます。
ステップ 5.1.2.2
をかけます。
ステップ 5.1.3
をたし算します。
ステップ 5.2
をかけます。
ステップ 6
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.1
乗します。
ステップ 6.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 6.1.2.1
をかけます。
ステップ 6.1.2.2
をかけます。
ステップ 6.1.3
をたし算します。
ステップ 6.2
をかけます。
ステップ 6.3
に変更します。
ステップ 7
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 7.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 7.1.1
乗します。
ステップ 7.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 7.1.2.1
をかけます。
ステップ 7.1.2.2
をかけます。
ステップ 7.1.3
をたし算します。
ステップ 7.2
をかけます。
ステップ 7.3
に変更します。
ステップ 8
最終的な答えは両方の解の組み合わせです。
ステップ 9
結果は複数の形で表すことができます。
完全形:
10進法形式: