代数学準備 例

平方根の性質を利用して解く 36=(x^2-x)/2
ステップ 1
方程式をとして書き換えます。
ステップ 2
方程式の両辺にを掛けます。
ステップ 3
方程式の両辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.1.1.1
共通因数を約分します。
ステップ 3.1.1.2
式を書き換えます。
ステップ 3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
をかけます。
ステップ 4
方程式の両辺からを引きます。
ステップ 5
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 5.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 5.2
この整数を利用して因数分解の形を書きます。
ステップ 6
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 7
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
に等しいとします。
ステップ 7.2
方程式の両辺にを足します。
ステップ 8
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 8.1
に等しいとします。
ステップ 8.2
方程式の両辺からを引きます。
ステップ 9
最終解はを真にするすべての値です。