問題を入力...
代数学準備 例
ステップ 1
ステップ 1.1
式が未定義である場所を求めます。
ステップ 1.2
を左から、を右からとしているので、は垂直漸近線です。
ステップ 1.3
の値を求め水平漸近線を求めます。
ステップ 1.3.1
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.3.2
ロピタルの定理を当てはめます。
ステップ 1.3.2.1
分子と分母の極限値を求めます。
ステップ 1.3.2.1.1
分子と分母の極限値をとります。
ステップ 1.3.2.1.2
分子の極限値を求めます。
ステップ 1.3.2.1.2.1
極限を求めます。
ステップ 1.3.2.1.2.1.1
がに近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 1.3.2.1.2.1.2
がに近づくと定数であるの極限値を求めます。
ステップ 1.3.2.1.2.2
対数が無限大に近づくとき、値はになります。
ステップ 1.3.2.1.2.3
答えを簡約します。
ステップ 1.3.2.1.2.3.1
0でない定数に無限大倍すると無限大です。
ステップ 1.3.2.1.2.3.2
無限大プラスまたはマイナスある数は無限大です。
ステップ 1.3.2.1.3
首位係数が正である多項式の無限大における極限は無限大です。
ステップ 1.3.2.1.4
無限大割る無限大は未定義です。
未定義
ステップ 1.3.2.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 1.3.2.3
分子と分母の微分係数を求めます。
ステップ 1.3.2.3.1
分母と分子を微分します。
ステップ 1.3.2.3.2
総和則では、のに関する積分はです。
ステップ 1.3.2.3.3
はについて定数なので、についての微分係数はです。
ステップ 1.3.2.3.4
の値を求めます。
ステップ 1.3.2.3.4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.3.2.3.4.2
に関するの微分係数はです。
ステップ 1.3.2.3.5
からを引きます。
ステップ 1.3.2.3.6
のとき、はであるというべき乗則を使って微分します。
ステップ 1.3.2.4
分子に分母の逆数を掛けます。
ステップ 1.3.2.5
因数をまとめます。
ステップ 1.3.2.5.1
にをかけます。
ステップ 1.3.2.5.2
を乗します。
ステップ 1.3.2.5.3
を乗します。
ステップ 1.3.2.5.4
べき乗則を利用して指数を組み合わせます。
ステップ 1.3.2.5.5
とをたし算します。
ステップ 1.3.3
極限を求めます。
ステップ 1.3.3.1
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.3.3.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 1.3.4
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 1.3.5
答えを簡約します。
ステップ 1.3.5.1
の共通因数を約分します。
ステップ 1.3.5.1.1
をで因数分解します。
ステップ 1.3.5.1.2
共通因数を約分します。
ステップ 1.3.5.1.3
式を書き換えます。
ステップ 1.3.5.2
にをかけます。
ステップ 1.4
水平漸近線のリスト:
ステップ 1.5
対数関数と三角関数の斜めの漸近線はありません。
斜めの漸近線がありません
ステップ 1.6
すべての漸近線の集合です。
垂直漸近線:
水平漸近線:
垂直漸近線:
水平漸近線:
ステップ 2
ステップ 2.1
式の変数をで置換えます。
ステップ 2.2
結果を簡約します。
ステップ 2.2.1
分子を簡約します。
ステップ 2.2.1.1
の自然対数はです。
ステップ 2.2.1.2
にをかけます。
ステップ 2.2.1.3
とをたし算します。
ステップ 2.2.2
式を簡約します。
ステップ 2.2.2.1
1のすべての数の累乗は1です。
ステップ 2.2.2.2
にをかけます。
ステップ 2.2.2.3
をで割ります。
ステップ 2.2.3
最終的な答えはです。
ステップ 2.3
を10進数に変換します。
ステップ 3
ステップ 3.1
式の変数をで置換えます。
ステップ 3.2
結果を簡約します。
ステップ 3.2.1
共通因数を約分します。
ステップ 3.2.1.1
をで因数分解します。
ステップ 3.2.1.2
共通因数を約分します。
ステップ 3.2.1.3
式を書き換えます。
ステップ 3.2.2
最終的な答えはです。
ステップ 3.3
を10進数に変換します。
ステップ 4
ステップ 4.1
式の変数をで置換えます。
ステップ 4.2
結果を簡約します。
ステップ 4.2.1
を乗します。
ステップ 4.2.2
最終的な答えはです。
ステップ 4.3
を10進数に変換します。
ステップ 5
対数関数は、における垂直漸近線と点を利用してグラフにすることができます。
垂直漸近線:
ステップ 6