代数学準備 例

グラフ化する f(x)=|x|+1/x
ステップ 1
の定義域を求めると、値のリストが選択され、点のリストを求めることができます。このことで、絶対値関数をグラフにできます。
タップして手順をさらに表示してください…
ステップ 1.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 1.2
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
区間記号:
集合の内包的記法:
ステップ 2
値について値が1つあります。定義域から値をいくつか選択します。頂点の絶対値の値周辺にあるように値を選択するとより便利になるでしょう。
タップして手順をさらに表示してください…
ステップ 2.1
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 2.1.1
式の変数で置換えます。
ステップ 2.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 2.1.2.1.2
分数の前に負数を移動させます。
ステップ 2.1.2.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.1.2.3
をまとめます。
ステップ 2.1.2.4
公分母の分子をまとめます。
ステップ 2.1.2.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.5.1
をかけます。
ステップ 2.1.2.5.2
からを引きます。
ステップ 2.1.2.6
最終的な答えはです。
ステップ 2.2
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 2.2.1
式の変数で置換えます。
ステップ 2.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 2.2.2.1.2
で割ります。
ステップ 2.2.2.2
からを引きます。
ステップ 2.2.2.3
最終的な答えはです。
ステップ 2.3
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 2.3.1
式の変数で置換えます。
ステップ 2.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.2.2
をたし算します。
ステップ 2.3.2.3
最終的な答えはです。
ステップ 2.4
値のに代入します。この場合、点はです。
タップして手順をさらに表示してください…
ステップ 2.4.1
式の変数で置換えます。
ステップ 2.4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 2.4.2.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.4.2.3
をまとめます。
ステップ 2.4.2.4
公分母の分子をまとめます。
ステップ 2.4.2.5
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.2.5.1
をかけます。
ステップ 2.4.2.5.2
をたし算します。
ステップ 2.4.2.6
最終的な答えはです。
ステップ 2.5
絶対値は、頂点の周りの点を利用してグラフにすることができます
ステップ 3