問題を入力...
代数学準備 例
ステップ 1
ステップ 1.1
の被開数を以上として、式が定義である場所を求めます。
ステップ 1.2
について解きます。
ステップ 1.2.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 1.2.2
がに等しいとします。
ステップ 1.2.3
をに等しくし、を解きます。
ステップ 1.2.3.1
がに等しいとします。
ステップ 1.2.3.2
についてを解きます。
ステップ 1.2.3.2.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 1.2.3.2.2
が未定義なので、方程式は解くことができません。
未定義
ステップ 1.2.3.2.3
の解はありません
解がありません
解がありません
解がありません
ステップ 1.2.4
最終解はを真にするすべての値です。
ステップ 1.2.5
解はすべての真の区間からなります。
ステップ 1.3
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
区間記号:
集合の内包的記法:
ステップ 2
ステップ 2.1
式の変数をで置換えます。
ステップ 2.2
結果を簡約します。
ステップ 2.2.1
にをかけます。
ステップ 2.2.2
をに書き換えます。
ステップ 2.2.3
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.2.4
最終的な答えはです。
ステップ 3
無理式の端点はです。
ステップ 4
ステップ 4.1
値のをに代入します。この場合、点はです。
ステップ 4.1.1
式の変数をで置換えます。
ステップ 4.1.2
結果を簡約します。
ステップ 4.1.2.1
にをかけます。
ステップ 4.1.2.2
最終的な答えはです。
ステップ 4.2
値のをに代入します。この場合、点はです。
ステップ 4.2.1
式の変数をで置換えます。
ステップ 4.2.2
結果を簡約します。
ステップ 4.2.2.1
とを並べ替えます。
ステップ 4.2.2.2
累乗根の下から項を取り出します。
ステップ 4.2.2.3
最終的な答えはです。
ステップ 4.3
平方根は、頂点の周りの点を利用してグラフにすることができます。
ステップ 5