代数学準備 例

変数の二次定数を求める (x+y)/(x-y)=3/4
ステップ 1
分数を2つの分数に分割します。
ステップ 2
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 2.3
は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 2.4
にはの因数があります。
ステップ 2.5
をかけます。
ステップ 2.6
の因数はそのものです。
回発生します。
ステップ 2.7
の最小公倍数は、すべての因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 2.8
ある数の最小公倍数はその数が因数分解された最小の数です。
ステップ 3
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
積の可換性を利用して書き換えます。
ステップ 3.2.1.2
をまとめます。
ステップ 3.2.1.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.3.1
共通因数を約分します。
ステップ 3.2.1.3.2
式を書き換えます。
ステップ 3.2.1.4
積の可換性を利用して書き換えます。
ステップ 3.2.1.5
をまとめます。
ステップ 3.2.1.6
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.6.1
共通因数を約分します。
ステップ 3.2.1.6.2
式を書き換えます。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
共通因数を約分します。
ステップ 3.3.1.2
式を書き換えます。
ステップ 3.3.2
分配則を当てはめます。
ステップ 3.3.3
をかけます。
ステップ 4
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 4.1.1
方程式の両辺にを足します。
ステップ 4.1.2
をたし算します。
ステップ 4.2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 4.2.1
方程式の両辺からを引きます。
ステップ 4.2.2
からを引きます。
ステップ 4.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.1
の各項をで割ります。
ステップ 4.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.3.2.1.1
共通因数を約分します。
ステップ 4.3.2.1.2
で割ります。
ステップ 4.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.3.1
分数の前に負数を移動させます。
ステップ 5
与えられた方程式として書くことができません。そのため、と直接変化しません。
と正比例しません