代数学準備 例

Решить относительно x x(x-2)<=x(2x+6)
ステップ 1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
書き換えます。
ステップ 1.2
0を加えて簡約します。
ステップ 1.3
分配則を当てはめます。
ステップ 1.4
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1
をかけます。
ステップ 1.4.2
の左に移動させます。
ステップ 2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
両辺を掛けて簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.1
分配則を当てはめます。
ステップ 2.1.2
並べ替えます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
積の可換性を利用して書き換えます。
ステップ 2.1.2.2
の左に移動させます。
ステップ 2.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 2.2.1
を移動させます。
ステップ 2.2.2
をかけます。
ステップ 3
を含むすべての項を不等式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 3.1
不等式の両辺からを引きます。
ステップ 3.2
不等式の両辺からを引きます。
ステップ 3.3
からを引きます。
ステップ 3.4
からを引きます。
ステップ 4
不等式を方程式に変換します。
ステップ 5
で因数分解します。
タップして手順をさらに表示してください…
ステップ 5.1
で因数分解します。
ステップ 5.2
で因数分解します。
ステップ 5.3
で因数分解します。
ステップ 6
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 7
に等しいとします。
ステップ 8
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 8.1
に等しいとします。
ステップ 8.2
方程式の両辺からを引きます。
ステップ 9
最終解はを真にするすべての値です。
ステップ 10
各根を利用して検定区間を作成します。
ステップ 11
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 11.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.1.2
を元の不等式ので置き換えます。
ステップ 11.1.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
ステップ 11.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.2.2
を元の不等式ので置き換えます。
ステップ 11.2.3
左辺は右辺より大きいです。つまり、与えられた文は偽です。
ステップ 11.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.3.2
を元の不等式ので置き換えます。
ステップ 11.3.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
ステップ 11.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 12
解はすべての真の区間からなります。
または
ステップ 13
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 14