代数学準備 例

指数関数を求める (-3,-8)
ステップ 1
点を含む指数関数を求めるために、関数のを点のとし、を点のとします。
ステップ 2
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式をとして書き換えます。
ステップ 2.2
負の指数法則を利用して式を書き換えます。
ステップ 2.3
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 2.3.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.3.2
1と任意の式の最小公倍数はその式です。
ステップ 2.4
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 2.4.1
の各項にを掛けます。
ステップ 2.4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1.1
共通因数を約分します。
ステップ 2.4.2.1.2
式を書き換えます。
ステップ 2.5
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.1
方程式をとして書き換えます。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.5.3
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 2.5.3.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.5.3.1.1
で因数分解します。
ステップ 2.5.3.1.2
に書き換えます。
ステップ 2.5.3.1.3
で因数分解します。
ステップ 2.5.3.2
に書き換えます。
ステップ 2.5.3.3
に書き換えます。
ステップ 2.5.3.4
両項とも完全立方なので、立方の和の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.5.3.5
因数分解。
タップして手順をさらに表示してください…
ステップ 2.5.3.5.1
簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.3.5.1.1
積の法則をに当てはめます。
ステップ 2.5.3.5.1.2
乗します。
ステップ 2.5.3.5.1.3
をかけます。
ステップ 2.5.3.5.1.4
をかけます。
ステップ 2.5.3.5.1.5
1のすべての数の累乗は1です。
ステップ 2.5.3.5.2
不要な括弧を削除します。
ステップ 2.5.4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.5.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.5.1
に等しいとします。
ステップ 2.5.5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.5.5.2.1
方程式の両辺からを引きます。
ステップ 2.5.5.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.5.2.2.1
の各項をで割ります。
ステップ 2.5.5.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.5.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.5.2.2.2.1.1
共通因数を約分します。
ステップ 2.5.5.2.2.2.1.2
で割ります。
ステップ 2.5.5.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.5.2.2.3.1
分数の前に負数を移動させます。
ステップ 2.5.6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.6.1
に等しいとします。
ステップ 2.5.6.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.1
二次方程式の解の公式を利用して解を求めます。
ステップ 2.5.6.2.2
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 2.5.6.2.3
簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.3.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.3.1.1
乗します。
ステップ 2.5.6.2.3.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.3.1.2.1
をかけます。
ステップ 2.5.6.2.3.1.2.2
をかけます。
ステップ 2.5.6.2.3.1.3
からを引きます。
ステップ 2.5.6.2.3.1.4
に書き換えます。
ステップ 2.5.6.2.3.1.5
に書き換えます。
ステップ 2.5.6.2.3.1.6
に書き換えます。
ステップ 2.5.6.2.3.1.7
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.3.1.7.1
で因数分解します。
ステップ 2.5.6.2.3.1.7.2
に書き換えます。
ステップ 2.5.6.2.3.1.8
累乗根の下から項を取り出します。
ステップ 2.5.6.2.3.1.9
の左に移動させます。
ステップ 2.5.6.2.3.2
をかけます。
ステップ 2.5.6.2.3.3
を簡約します。
ステップ 2.5.6.2.4
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.4.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.4.1.1
乗します。
ステップ 2.5.6.2.4.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.4.1.2.1
をかけます。
ステップ 2.5.6.2.4.1.2.2
をかけます。
ステップ 2.5.6.2.4.1.3
からを引きます。
ステップ 2.5.6.2.4.1.4
に書き換えます。
ステップ 2.5.6.2.4.1.5
に書き換えます。
ステップ 2.5.6.2.4.1.6
に書き換えます。
ステップ 2.5.6.2.4.1.7
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.4.1.7.1
で因数分解します。
ステップ 2.5.6.2.4.1.7.2
に書き換えます。
ステップ 2.5.6.2.4.1.8
累乗根の下から項を取り出します。
ステップ 2.5.6.2.4.1.9
の左に移動させます。
ステップ 2.5.6.2.4.2
をかけます。
ステップ 2.5.6.2.4.3
を簡約します。
ステップ 2.5.6.2.4.4
に変更します。
ステップ 2.5.6.2.5
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.5.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.5.1.1
乗します。
ステップ 2.5.6.2.5.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.5.1.2.1
をかけます。
ステップ 2.5.6.2.5.1.2.2
をかけます。
ステップ 2.5.6.2.5.1.3
からを引きます。
ステップ 2.5.6.2.5.1.4
に書き換えます。
ステップ 2.5.6.2.5.1.5
に書き換えます。
ステップ 2.5.6.2.5.1.6
に書き換えます。
ステップ 2.5.6.2.5.1.7
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.5.6.2.5.1.7.1
で因数分解します。
ステップ 2.5.6.2.5.1.7.2
に書き換えます。
ステップ 2.5.6.2.5.1.8
累乗根の下から項を取り出します。
ステップ 2.5.6.2.5.1.9
の左に移動させます。
ステップ 2.5.6.2.5.2
をかけます。
ステップ 2.5.6.2.5.3
を簡約します。
ステップ 2.5.6.2.5.4
に変更します。
ステップ 2.5.6.2.6
最終的な答えは両方の解の組み合わせです。
ステップ 2.5.7
最終解はを真にするすべての値です。
ステップ 2.6
虚数成分を含む値をすべて削除します。
タップして手順をさらに表示してください…
ステップ 2.6.1
虚数成分はありません。最終の答えにを足します。
は実数です
ステップ 2.6.2
文字は虚数成分を表し、実数ではありません。を最終の答えに加えてはいけません。
は実数ではありません
ステップ 2.6.3
文字は虚数成分を表し、実数ではありません。を最終の答えに加えてはいけません。
は実数ではありません
ステップ 2.6.4
最終的な答えは虚数成分を含まない値のリストです。
ステップ 3
各値をに代入し、関数に戻し、それぞれの可能な指数関数を求めます。