代数学準備 例

Решить относительно p (p+8)/(p^2+8p+12)-11/(p^2+6p+8)=1/(p^2+10p+24)
ステップ 1
各項を因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 1.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.1.2
この整数を利用して因数分解の形を書きます。
ステップ 1.2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2.2
この整数を利用して因数分解の形を書きます。
ステップ 1.3
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 1.3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.3.2
この整数を利用して因数分解の形を書きます。
ステップ 2
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 2.3
は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 2.4
の最小公倍数は、すべての素因数がいずれかの数に出現する回数の最大数を掛けた結果です。
ステップ 2.5
の因数はそのものです。
回発生します。
ステップ 2.6
の因数はそのものです。
回発生します。
ステップ 2.7
の因数はそのものです。
回発生します。
ステップ 2.8
の因数はそのものです。
回発生します。
ステップ 2.9
の因数はそのものです。
回発生します。
ステップ 2.10
の最小公倍数は、すべての因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 3
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
共通因数を約分します。
ステップ 3.2.1.1.2
式を書き換えます。
ステップ 3.2.1.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 3.2.1.2.1
分配則を当てはめます。
ステップ 3.2.1.2.2
分配則を当てはめます。
ステップ 3.2.1.2.3
分配則を当てはめます。
ステップ 3.2.1.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 3.2.1.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.3.1.1
をかけます。
ステップ 3.2.1.3.1.2
の左に移動させます。
ステップ 3.2.1.3.1.3
をかけます。
ステップ 3.2.1.3.2
をたし算します。
ステップ 3.2.1.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.4.1
の先頭の負を分子に移動させます。
ステップ 3.2.1.4.2
で因数分解します。
ステップ 3.2.1.4.3
共通因数を約分します。
ステップ 3.2.1.4.4
式を書き換えます。
ステップ 3.2.1.5
分配則を当てはめます。
ステップ 3.2.1.6
をかけます。
ステップ 3.2.2
項を加えて簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
からを引きます。
ステップ 3.2.2.2
からを引きます。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
で因数分解します。
ステップ 3.3.1.2
で因数分解します。
ステップ 3.3.1.3
共通因数を約分します。
ステップ 3.3.1.4
式を書き換えます。
ステップ 4
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 4.1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 4.1.1
方程式の両辺からを引きます。
ステップ 4.1.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
からを引きます。
ステップ 4.1.2.2
をたし算します。
ステップ 4.2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 4.2.1
方程式の両辺にを足します。
ステップ 4.2.2
をたし算します。
ステップ 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 4.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.4.1
に書き換えます。
ステップ 4.4.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.5
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 4.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 5
が真にならない解を除外します。