代数学準備 例

簡略化 ((v^2-2v-3)/(v^2-2v+1))÷((v-3)/(v-1))
ステップ 1
分数を割るために、その逆数を掛けます。
ステップ 2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2
この整数を利用して因数分解の形を書きます。
ステップ 3
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1
に書き換えます。
ステップ 3.2
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 3.3
多項式を書き換えます。
ステップ 3.4
ならば、完全平方3項式を利用して因数分解します。
ステップ 4
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 4.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.1
共通因数を約分します。
ステップ 4.1.2
式を書き換えます。
ステップ 4.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1
で因数分解します。
ステップ 4.2.2
共通因数を約分します。
ステップ 4.2.3
式を書き換えます。