代数学準備 例

Решить относительно y 7/(3y)=x/(9y^7)
ステップ 1
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
ステップ 1.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 1.4
には、以外に因数がないため。
は素数です
ステップ 1.5
にはの因数があります。
ステップ 1.6
をかけます。
ステップ 1.7
の因数はそのものです。
回発生します。
ステップ 1.8
の因数はです。これは倍したものです。
回発生します。
ステップ 1.9
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 1.10
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.10.1
をかけます。
ステップ 1.10.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.10.2.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.10.2.1.1
乗します。
ステップ 1.10.2.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.10.2.2
をたし算します。
ステップ 1.10.3
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.10.3.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.10.3.1.1
乗します。
ステップ 1.10.3.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.10.3.2
をたし算します。
ステップ 1.10.4
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.10.4.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.10.4.1.1
乗します。
ステップ 1.10.4.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.10.4.2
をたし算します。
ステップ 1.10.5
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.10.5.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.10.5.1.1
乗します。
ステップ 1.10.5.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.10.5.2
をたし算します。
ステップ 1.10.6
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.10.6.1
をかけます。
タップして手順をさらに表示してください…
ステップ 1.10.6.1.1
乗します。
ステップ 1.10.6.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.10.6.2
をたし算します。
ステップ 1.11
の最小公倍数は数値部分に変数部分を掛けたものです。
ステップ 2
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 2.1
の各項にを掛けます。
ステップ 2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
積の可換性を利用して書き換えます。
ステップ 2.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
で因数分解します。
ステップ 2.2.2.2
で因数分解します。
ステップ 2.2.2.3
共通因数を約分します。
ステップ 2.2.2.4
式を書き換えます。
ステップ 2.2.3
をまとめます。
ステップ 2.2.4
をかけます。
ステップ 2.2.5
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.5.1
で因数分解します。
ステップ 2.2.5.2
共通因数を約分します。
ステップ 2.2.5.3
式を書き換えます。
ステップ 2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
積の可換性を利用して書き換えます。
ステップ 2.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
で因数分解します。
ステップ 2.3.2.2
共通因数を約分します。
ステップ 2.3.2.3
式を書き換えます。
ステップ 2.3.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
共通因数を約分します。
ステップ 2.3.3.2
式を書き換えます。
ステップ 3
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.1
の各項をで割ります。
ステップ 3.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.1.2.1.1
共通因数を約分します。
ステップ 3.1.2.1.2
で割ります。
ステップ 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 3.3
に書き換えます。
ステップ 3.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 3.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.4.3
完全解は、解の正と負の部分の両方の計算結果です。