代数学準備 例

足す r/(r^2-4)+1/(r^2-6r+8)
ステップ 1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1
に書き換えます。
ステップ 1.1.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.2
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.2.2
この整数を利用して因数分解の形を書きます。
ステップ 2
を公分母のある分数として書くために、を掛けます。
ステップ 3
を公分母のある分数として書くために、を掛けます。
ステップ 4
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 4.1
をかけます。
ステップ 4.2
をかけます。
ステップ 4.3
の因数を並べ替えます。
ステップ 5
公分母の分子をまとめます。
ステップ 6
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
分配則を当てはめます。
ステップ 6.2
をかけます。
ステップ 6.3
の左に移動させます。
ステップ 6.4
をたし算します。
ステップ 6.5
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 6.5.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 6.5.2
この整数を利用して因数分解の形を書きます。
ステップ 7
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.1
共通因数を約分します。
ステップ 7.2
式を書き換えます。