線形代数 例

三角公式への変換 i^167
ステップ 1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
を因数分解します。
ステップ 1.2
に書き換えます。
ステップ 1.3
を因数分解します。
ステップ 2
に書き換えます。
タップして手順をさらに表示してください…
ステップ 2.1
に書き換えます。
ステップ 2.2
に書き換えます。
ステップ 2.3
乗します。
ステップ 3
1のすべての数の累乗は1です。
ステップ 4
をかけます。
ステップ 5
に書き換えます。
ステップ 6
に書き換えます。
ステップ 7
複素数の三角法の式です。ここで、は絶対値、は複素数平面上にできる角です。
ステップ 8
複素数の係数は、複素数平面上の原点からの距離です。
ならば
ステップ 9
の実際の値を代入します。
ステップ 10
を求めます。
タップして手順をさらに表示してください…
ステップ 10.1
乗します。
ステップ 10.2
のいずれの根はです。
ステップ 11
複素平面上の点の角は、複素部分の実部分に対する逆正切です。
ステップ 12
偏角が未定義でが負なので、複素平面上の点の角はです。
ステップ 13
の値を代入します。