問題を入力...
線形代数 例
ステップ 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
ステップ 2
ステップ 2.1
Multiply each element of by to make the entry at a .
ステップ 2.1.1
Multiply each element of by to make the entry at a .
ステップ 2.1.2
を簡約します。
ステップ 2.2
Perform the row operation to make the entry at a .
ステップ 2.2.1
Perform the row operation to make the entry at a .
ステップ 2.2.2
を簡約します。
ステップ 2.3
Perform the row operation to make the entry at a .
ステップ 2.3.1
Perform the row operation to make the entry at a .
ステップ 2.3.2
を簡約します。
ステップ 2.4
Multiply each element of by to make the entry at a .
ステップ 2.4.1
Multiply each element of by to make the entry at a .
ステップ 2.4.2
を簡約します。
ステップ 2.5
Perform the row operation to make the entry at a .
ステップ 2.5.1
Perform the row operation to make the entry at a .
ステップ 2.5.2
を簡約します。
ステップ 2.6
Multiply each element of by to make the entry at a .
ステップ 2.6.1
Multiply each element of by to make the entry at a .
ステップ 2.6.2
を簡約します。
ステップ 2.7
Perform the row operation to make the entry at a .
ステップ 2.7.1
Perform the row operation to make the entry at a .
ステップ 2.7.2
を簡約します。
ステップ 2.8
Perform the row operation to make the entry at a .
ステップ 2.8.1
Perform the row operation to make the entry at a .
ステップ 2.8.2
を簡約します。
ステップ 2.9
Perform the row operation to make the entry at a .
ステップ 2.9.1
Perform the row operation to make the entry at a .
ステップ 2.9.2
を簡約します。
ステップ 3
The pivot positions are the locations with the leading in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: and
Pivot Columns: and
ステップ 4
The nullity is the number of columns without a pivot position in the row reduced matrix.