問題を入力...
線形代数 例
ステップ 1
ステップ 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
ステップ 1.2
1番目の行列の各行と2番目の行列の各列を掛けます。
ステップ 1.3
すべての式を掛けて、行列の各要素を簡約します。
ステップ 2
ステップ 2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
ステップ 2.1.1
Consider the corresponding sign chart.
ステップ 2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ステップ 2.1.3
The minor for is the determinant with row and column deleted.
ステップ 2.1.4
Multiply element by its cofactor.
ステップ 2.1.5
The minor for is the determinant with row and column deleted.
ステップ 2.1.6
Multiply element by its cofactor.
ステップ 2.1.7
The minor for is the determinant with row and column deleted.
ステップ 2.1.8
Multiply element by its cofactor.
ステップ 2.1.9
Add the terms together.
ステップ 2.2
にをかけます。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
行列の行列式は公式を利用して求めることができます。
ステップ 2.3.2
各項を簡約します。
ステップ 2.3.2.1
をの左に移動させます。
ステップ 2.3.2.2
をに書き換えます。
ステップ 2.3.2.3
を掛けます。
ステップ 2.3.2.3.1
にをかけます。
ステップ 2.3.2.3.2
にをかけます。
ステップ 2.4
の値を求めます。
ステップ 2.4.1
行列の行列式は公式を利用して求めることができます。
ステップ 2.4.2
各項を簡約します。
ステップ 2.4.2.1
をの左に移動させます。
ステップ 2.4.2.2
をに書き換えます。
ステップ 2.4.2.3
を掛けます。
ステップ 2.4.2.3.1
にをかけます。
ステップ 2.4.2.3.2
にをかけます。
ステップ 2.5
行列式を簡約します。
ステップ 2.5.1
とをたし算します。
ステップ 2.5.2
各項を簡約します。
ステップ 2.5.2.1
分配則を当てはめます。
ステップ 2.5.2.2
積の可換性を利用して書き換えます。
ステップ 2.5.2.3
にをかけます。
ステップ 2.5.2.4
指数を足してにを掛けます。
ステップ 2.5.2.4.1
を移動させます。
ステップ 2.5.2.4.2
にをかけます。
ステップ 2.5.2.5
分配則を当てはめます。
ステップ 2.5.2.6
積の可換性を利用して書き換えます。
ステップ 2.5.2.7
にをかけます。
ステップ 2.5.2.8
各項を簡約します。
ステップ 2.5.2.8.1
指数を足してにを掛けます。
ステップ 2.5.2.8.1.1
を移動させます。
ステップ 2.5.2.8.1.2
にをかけます。
ステップ 2.5.2.8.2
にをかけます。
ステップ 2.5.3
とをたし算します。
ステップ 2.5.4
からを引きます。
ステップ 3
Since the determinant is non-zero, the inverse exists.
ステップ 4
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
ステップ 5
ステップ 5.1
Multiply each element of by to make the entry at a .
ステップ 5.1.1
Multiply each element of by to make the entry at a .
ステップ 5.1.2
を簡約します。
ステップ 5.2
Perform the row operation to make the entry at a .
ステップ 5.2.1
Perform the row operation to make the entry at a .
ステップ 5.2.2
を簡約します。
ステップ 5.3
Multiply each element of by to make the entry at a .
ステップ 5.3.1
Multiply each element of by to make the entry at a .
ステップ 5.3.2
を簡約します。
ステップ 5.4
Perform the row operation to make the entry at a .
ステップ 5.4.1
Perform the row operation to make the entry at a .
ステップ 5.4.2
を簡約します。
ステップ 5.5
Multiply each element of by to make the entry at a .
ステップ 5.5.1
Multiply each element of by to make the entry at a .
ステップ 5.5.2
を簡約します。
ステップ 5.6
Perform the row operation to make the entry at a .
ステップ 5.6.1
Perform the row operation to make the entry at a .
ステップ 5.6.2
を簡約します。
ステップ 5.7
Perform the row operation to make the entry at a .
ステップ 5.7.1
Perform the row operation to make the entry at a .
ステップ 5.7.2
を簡約します。
ステップ 5.8
Perform the row operation to make the entry at a .
ステップ 5.8.1
Perform the row operation to make the entry at a .
ステップ 5.8.2
を簡約します。
ステップ 6
The right half of the reduced row echelon form is the inverse.