線形代数 例

変数を求める [[6,0],[0,6]][[1,x],[y,1]]=[[6,2],[4,2]]
ステップ 1
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
ステップ 1.2
1番目の行列の各行と2番目の行列の各列を掛けます。
ステップ 1.3
すべての式を掛けて、行列の各要素を簡約します。
ステップ 2
行列方程式は方程式の集合として書くことができます。
ステップ 3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
で割ります。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
で因数分解します。
ステップ 3.3.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.2.1
で因数分解します。
ステップ 3.3.1.2.2
共通因数を約分します。
ステップ 3.3.1.2.3
式を書き換えます。
ステップ 4
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
の各項をで割ります。
ステップ 4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
共通因数を約分します。
ステップ 4.2.1.2
で割ります。
ステップ 4.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.3.1.1
で因数分解します。
ステップ 4.3.1.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.3.1.2.1
で因数分解します。
ステップ 4.3.1.2.2
共通因数を約分します。
ステップ 4.3.1.2.3
式を書き換えます。
ステップ 5
すべての解をまとめます。