問題を入力...
線形代数 例
ステップ 1
二次方程式の解の公式を利用して解を求めます。
ステップ 2
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 3
ステップ 3.1
分子を簡約します。
ステップ 3.1.1
を乗します。
ステップ 3.1.2
を掛けます。
ステップ 3.1.2.1
にをかけます。
ステップ 3.1.2.2
にをかけます。
ステップ 3.1.3
からを引きます。
ステップ 3.1.4
をに書き換えます。
ステップ 3.1.5
をに書き換えます。
ステップ 3.1.6
をに書き換えます。
ステップ 3.1.7
をに書き換えます。
ステップ 3.1.8
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.1.9
をの左に移動させます。
ステップ 3.2
にをかけます。
ステップ 3.3
を簡約します。
ステップ 4
ステップ 4.1
分子を簡約します。
ステップ 4.1.1
を乗します。
ステップ 4.1.2
を掛けます。
ステップ 4.1.2.1
にをかけます。
ステップ 4.1.2.2
にをかけます。
ステップ 4.1.3
からを引きます。
ステップ 4.1.4
をに書き換えます。
ステップ 4.1.5
をに書き換えます。
ステップ 4.1.6
をに書き換えます。
ステップ 4.1.7
をに書き換えます。
ステップ 4.1.8
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.1.9
をの左に移動させます。
ステップ 4.2
にをかけます。
ステップ 4.3
を簡約します。
ステップ 4.4
をに変更します。
ステップ 5
ステップ 5.1
分子を簡約します。
ステップ 5.1.1
を乗します。
ステップ 5.1.2
を掛けます。
ステップ 5.1.2.1
にをかけます。
ステップ 5.1.2.2
にをかけます。
ステップ 5.1.3
からを引きます。
ステップ 5.1.4
をに書き換えます。
ステップ 5.1.5
をに書き換えます。
ステップ 5.1.6
をに書き換えます。
ステップ 5.1.7
をに書き換えます。
ステップ 5.1.8
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 5.1.9
をの左に移動させます。
ステップ 5.2
にをかけます。
ステップ 5.3
を簡約します。
ステップ 5.4
をに変更します。
ステップ 6
最終的な答えは両方の解の組み合わせです。
ステップ 7
定義域はすべての有効な値の集合です。
ステップ 8