問題を入力...
有限数学 例
ステップ 1
の被開数をより小さいとして、式が未定義である場所を求めます。
ステップ 2
ステップ 2.1
不等式を方程式に変換します。
ステップ 2.2
方程式の左辺を因数分解します。
ステップ 2.2.1
をで因数分解します。
ステップ 2.2.1.1
を移動させます。
ステップ 2.2.1.2
をで因数分解します。
ステップ 2.2.1.3
をで因数分解します。
ステップ 2.2.1.4
をに書き換えます。
ステップ 2.2.1.5
をで因数分解します。
ステップ 2.2.1.6
をで因数分解します。
ステップ 2.2.2
因数分解。
ステップ 2.2.2.1
たすき掛けを利用してを因数分解します。
ステップ 2.2.2.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2.2.1.2
この整数を利用して因数分解の形を書きます。
ステップ 2.2.2.2
不要な括弧を削除します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
方程式の両辺にを足します。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 2.7
各根を利用して検定区間を作成します。
ステップ 2.8
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
ステップ 2.8.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.1.2
を元の不等式ので置き換えます。
ステップ 2.8.1.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 2.8.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.2.2
を元の不等式ので置き換えます。
ステップ 2.8.2.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 2.8.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.3.2
を元の不等式ので置き換えます。
ステップ 2.8.3.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 2.8.4
区間を比較して、どちらが元の不等式を満たすか判定します。
真
偽
真
真
偽
真
ステップ 2.9
解はすべての真の区間からなります。
または
または
ステップ 3
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 4