問題を入力...
有限数学 例
ステップ 1
が不等式の左辺になるように書き換えます。
ステップ 2
不等式を方程式に変換します。
ステップ 3
二次方程式の解の公式を利用して解を求めます。
ステップ 4
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 5
ステップ 5.1
分子を簡約します。
ステップ 5.1.1
を乗します。
ステップ 5.1.2
を掛けます。
ステップ 5.1.2.1
にをかけます。
ステップ 5.1.2.2
にをかけます。
ステップ 5.1.3
とをたし算します。
ステップ 5.2
にをかけます。
ステップ 5.3
を簡約します。
ステップ 6
解をまとめます。
ステップ 7
各根を利用して検定区間を作成します。
ステップ 8
ステップ 8.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 8.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 8.1.2
を元の不等式ので置き換えます。
ステップ 8.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 8.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 8.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 8.2.2
を元の不等式ので置き換えます。
ステップ 8.2.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 8.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 8.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 8.3.2
を元の不等式ので置き換えます。
ステップ 8.3.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 8.4
区間を比較して、どちらが元の不等式を満たすか判定します。
真
偽
真
真
偽
真
ステップ 9
解はすべての真の区間からなります。
または
ステップ 10
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 11