有限数学 例

因数分解により解く 2x(x+3)=x^2+3x+70
ステップ 1
すべての式を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
方程式の両辺からを引きます。
ステップ 1.3
方程式の両辺からを引きます。
ステップ 2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.1
分配則を当てはめます。
ステップ 2.1.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
を移動させます。
ステップ 2.1.2.2
をかけます。
ステップ 2.1.3
をかけます。
ステップ 2.2
からを引きます。
ステップ 2.3
からを引きます。
ステップ 3
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 3.2
この整数を利用して因数分解の形を書きます。
ステップ 4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
に等しいとします。
ステップ 5.2
方程式の両辺にを足します。
ステップ 6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
に等しいとします。
ステップ 6.2
方程式の両辺からを引きます。
ステップ 7
最終解はを真にするすべての値です。