有限数学 例

代入による解法 3(x-y)=5(x+3)-13 , 2(2x-3y-10)=5(y+2)
,
ステップ 1
について解きます。
タップして手順をさらに表示してください…
ステップ 1.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.1
の各項をで割ります。
ステップ 1.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1.1
共通因数を約分します。
ステップ 1.1.2.1.2
で割ります。
ステップ 1.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
公分母の分子をまとめます。
ステップ 1.1.3.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.3.2.1
分配則を当てはめます。
ステップ 1.1.3.2.2
をかけます。
ステップ 1.1.3.3
からを引きます。
ステップ 1.2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺からを引きます。
ステップ 1.2.2
分数を2つの分数に分割します。
ステップ 1.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
の各項をで割ります。
ステップ 1.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.2.1
2つの負の値を割ると正の値になります。
ステップ 1.3.2.2
で割ります。
ステップ 1.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.1
公分母の分子をまとめます。
ステップ 1.3.3.2
を公分母のある分数として書くために、を掛けます。
ステップ 1.3.3.3
をまとめます。
ステップ 1.3.3.4
公分母の分子をまとめます。
ステップ 1.3.3.5
公分母の分子をまとめます。
ステップ 1.3.3.6
をかけます。
ステップ 1.3.3.7
からを引きます。
ステップ 1.3.3.8
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.3.3.8.1
で因数分解します。
ステップ 1.3.3.8.2
で因数分解します。
ステップ 1.3.3.8.3
で因数分解します。
ステップ 1.3.3.9
式を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.3.9.1
の分母からマイナス1を移動させます。
ステップ 1.3.3.9.2
に書き換えます。
ステップ 2
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 2.1
のすべての発生をで置き換えます。
ステップ 2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.1.1.1
の先頭の負を分子に移動させます。
ステップ 2.2.1.1.1.1.2
で因数分解します。
ステップ 2.2.1.1.1.1.3
共通因数を約分します。
ステップ 2.2.1.1.1.1.4
式を書き換えます。
ステップ 2.2.1.1.1.2
をかけます。
ステップ 2.2.1.1.1.3
分配則を当てはめます。
ステップ 2.2.1.1.1.4
をかけます。
ステップ 2.2.1.1.2
項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.2.1
をたし算します。
ステップ 2.2.1.1.2.2
からを引きます。
ステップ 2.2.1.1.2.3
分配則を当てはめます。
ステップ 2.2.1.1.2.4
掛け算します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1.2.4.1
をかけます。
ステップ 2.2.1.1.2.4.2
をかけます。
ステップ 2.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
を公分母のある分数として書くために、を掛けます。
ステップ 2.2.2.1.2
項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.2.1
をまとめます。
ステップ 2.2.2.1.2.2
公分母の分子をまとめます。
ステップ 2.2.2.1.3
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.3.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.3.1.1
で因数分解します。
ステップ 2.2.2.1.3.1.2
で因数分解します。
ステップ 2.2.2.1.3.1.3
で因数分解します。
ステップ 2.2.2.1.3.2
分配則を当てはめます。
ステップ 2.2.2.1.3.3
をかけます。
ステップ 2.2.2.1.3.4
をたし算します。
ステップ 2.2.2.1.4
を掛けます。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.4.1
をまとめます。
ステップ 2.2.2.1.4.2
をかけます。
ステップ 2.2.2.1.5
で因数分解します。
ステップ 2.2.2.1.6
に書き換えます。
ステップ 2.2.2.1.7
で因数分解します。
ステップ 2.2.2.1.8
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.8.1
に書き換えます。
ステップ 2.2.2.1.8.2
分数の前に負数を移動させます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
両辺にを掛けます。
ステップ 3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
分配則を当てはめます。
ステップ 3.2.1.1.2
掛け算します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.2.1
をかけます。
ステップ 3.2.1.1.2.2
をかけます。
ステップ 3.2.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1.1
の先頭の負を分子に移動させます。
ステップ 3.2.2.1.1.2
共通因数を約分します。
ステップ 3.2.2.1.1.3
式を書き換えます。
ステップ 3.2.2.1.2
分配則を当てはめます。
ステップ 3.2.2.1.3
をかけます。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
を含むすべての項を方程式の左辺に移動させます。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
方程式の両辺にを足します。
ステップ 3.3.1.2
をたし算します。
ステップ 3.3.2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
方程式の両辺にを足します。
ステップ 3.3.2.2
をたし算します。
ステップ 3.3.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1
の各項をで割ります。
ステップ 3.3.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.3.2.1.1
共通因数を約分します。
ステップ 3.3.3.2.1.2
で割ります。
ステップ 3.3.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.3.1
で割ります。
ステップ 4
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
のすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
をたし算します。
ステップ 4.2.1.2
をかけます。
ステップ 4.2.1.3
で割ります。
ステップ 4.2.1.4
をかけます。
ステップ 5
式の解は、有効な解である順序対の完全集合です。
ステップ 6
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 7