問題を入力...
有限数学 例
ステップ 1
ステップ 1.1
負の指数法則を利用して式を書き換えます。
ステップ 1.2
とをまとめます。
ステップ 1.3
負の指数法則を利用して式を書き換えます。
ステップ 1.4
とをまとめます。
ステップ 1.5
分数の前に負数を移動させます。
ステップ 2
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
ステップ 2.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 2.4
数は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 2.5
の最小公倍数は、すべての素因数がいずれかの数に出現する回数の最大数を掛けた結果です。
ステップ 2.6
の因数はです。これはを倍したものです。
は回発生します。
ステップ 2.7
の因数はです。これはを倍したものです。
は回発生します。
ステップ 2.8
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 2.9
を簡約します。
ステップ 2.9.1
にをかけます。
ステップ 2.9.2
指数を足してにを掛けます。
ステップ 2.9.2.1
にをかけます。
ステップ 2.9.2.1.1
を乗します。
ステップ 2.9.2.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.9.2.2
とをたし算します。
ステップ 2.9.3
指数を足してにを掛けます。
ステップ 2.9.3.1
にをかけます。
ステップ 2.9.3.1.1
を乗します。
ステップ 2.9.3.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 2.9.3.2
とをたし算します。
ステップ 3
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
各項を簡約します。
ステップ 3.2.1.1
の共通因数を約分します。
ステップ 3.2.1.1.1
共通因数を約分します。
ステップ 3.2.1.1.2
式を書き換えます。
ステップ 3.2.1.2
の共通因数を約分します。
ステップ 3.2.1.2.1
の先頭の負を分子に移動させます。
ステップ 3.2.1.2.2
をで因数分解します。
ステップ 3.2.1.2.3
共通因数を約分します。
ステップ 3.2.1.2.4
式を書き換えます。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
にをかけます。
ステップ 4
ステップ 4.1
を方程式に代入します。これにより二次方程式の解の公式を利用しやすくします。
ステップ 4.2
群による因数分解。
ステップ 4.2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 4.2.1.1
をで因数分解します。
ステップ 4.2.1.2
をプラスに書き換える
ステップ 4.2.1.3
分配則を当てはめます。
ステップ 4.2.2
各群から最大公約数を因数分解します。
ステップ 4.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 4.2.2.2
各群から最大公約数を因数分解します。
ステップ 4.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 4.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4.4
をに等しくし、を解きます。
ステップ 4.4.1
がに等しいとします。
ステップ 4.4.2
についてを解きます。
ステップ 4.4.2.1
方程式の両辺にを足します。
ステップ 4.4.2.2
の各項をで割り、簡約します。
ステップ 4.4.2.2.1
の各項をで割ります。
ステップ 4.4.2.2.2
左辺を簡約します。
ステップ 4.4.2.2.2.1
の共通因数を約分します。
ステップ 4.4.2.2.2.1.1
共通因数を約分します。
ステップ 4.4.2.2.2.1.2
をで割ります。
ステップ 4.5
をに等しくし、を解きます。
ステップ 4.5.1
がに等しいとします。
ステップ 4.5.2
についてを解きます。
ステップ 4.5.2.1
方程式の両辺にを足します。
ステップ 4.5.2.2
の各項をで割り、簡約します。
ステップ 4.5.2.2.1
の各項をで割ります。
ステップ 4.5.2.2.2
左辺を簡約します。
ステップ 4.5.2.2.2.1
の共通因数を約分します。
ステップ 4.5.2.2.2.1.1
共通因数を約分します。
ステップ 4.5.2.2.2.1.2
をで割ります。
ステップ 4.6
最終解はを真にするすべての値です。
ステップ 4.7
の実数を解いた方程式に代入して戻します。
ステップ 4.8
について第1方程式を解きます。
ステップ 4.9
について方程式を解きます。
ステップ 4.9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 4.9.2
を簡約します。
ステップ 4.9.2.1
をに書き換えます。
ステップ 4.9.2.2
のいずれの根はです。
ステップ 4.9.2.3
分母を簡約します。
ステップ 4.9.2.3.1
をに書き換えます。
ステップ 4.9.2.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.9.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.9.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.9.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.9.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.10
について二次方程式を解きます。
ステップ 4.11
について方程式を解きます。
ステップ 4.11.1
括弧を削除します。
ステップ 4.11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 4.11.3
を簡約します。
ステップ 4.11.3.1
をに書き換えます。
ステップ 4.11.3.2
分子を簡約します。
ステップ 4.11.3.2.1
をに書き換えます。
ステップ 4.11.3.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.11.3.3
分母を簡約します。
ステップ 4.11.3.3.1
をに書き換えます。
ステップ 4.11.3.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.11.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.11.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.11.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.11.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.12
の解はです。
ステップ 5
結果は複数の形で表すことができます。
完全形:
10進法形式:
帯分数形: