問題を入力...
有限数学 例
ステップ 1
各項にある共通因数を求めます。
ステップ 2
をに代入します。
ステップ 3
ステップ 3.1
にをかけます。
ステップ 3.2
方程式の左辺を因数分解します。
ステップ 3.2.1
をで因数分解します。
ステップ 3.2.1.1
をで因数分解します。
ステップ 3.2.1.2
をで因数分解します。
ステップ 3.2.1.3
をで因数分解します。
ステップ 3.2.1.4
をで因数分解します。
ステップ 3.2.1.5
をで因数分解します。
ステップ 3.2.2
をに書き換えます。
ステップ 3.2.3
とします。をに代入します。
ステップ 3.2.4
群による因数分解。
ステップ 3.2.4.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 3.2.4.1.1
をで因数分解します。
ステップ 3.2.4.1.2
をプラスに書き換える
ステップ 3.2.4.1.3
分配則を当てはめます。
ステップ 3.2.4.2
各群から最大公約数を因数分解します。
ステップ 3.2.4.2.1
前の2項と後ろの2項をまとめます。
ステップ 3.2.4.2.2
各群から最大公約数を因数分解します。
ステップ 3.2.4.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 3.2.5
因数分解。
ステップ 3.2.5.1
のすべての発生をで置き換えます。
ステップ 3.2.5.2
不要な括弧を削除します。
ステップ 3.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.4
がに等しいとします。
ステップ 3.5
をに等しくし、を解きます。
ステップ 3.5.1
がに等しいとします。
ステップ 3.5.2
についてを解きます。
ステップ 3.5.2.1
方程式の両辺にを足します。
ステップ 3.5.2.2
の各項をで割り、簡約します。
ステップ 3.5.2.2.1
の各項をで割ります。
ステップ 3.5.2.2.2
左辺を簡約します。
ステップ 3.5.2.2.2.1
の共通因数を約分します。
ステップ 3.5.2.2.2.1.1
共通因数を約分します。
ステップ 3.5.2.2.2.1.2
をで割ります。
ステップ 3.5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 3.5.2.4
を簡約します。
ステップ 3.5.2.4.1
をに書き換えます。
ステップ 3.5.2.4.2
にをかけます。
ステップ 3.5.2.4.3
分母を組み合わせて簡約します。
ステップ 3.5.2.4.3.1
にをかけます。
ステップ 3.5.2.4.3.2
を乗します。
ステップ 3.5.2.4.3.3
べき乗則を利用して指数を組み合わせます。
ステップ 3.5.2.4.3.4
とをたし算します。
ステップ 3.5.2.4.3.5
をに書き換えます。
ステップ 3.5.2.4.3.5.1
を利用し、をに書き換えます。
ステップ 3.5.2.4.3.5.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.5.2.4.3.5.3
とをまとめます。
ステップ 3.5.2.4.3.5.4
の共通因数を約分します。
ステップ 3.5.2.4.3.5.4.1
共通因数を約分します。
ステップ 3.5.2.4.3.5.4.2
式を書き換えます。
ステップ 3.5.2.4.3.5.5
指数を求めます。
ステップ 3.5.2.4.4
分子を簡約します。
ステップ 3.5.2.4.4.1
をに書き換えます。
ステップ 3.5.2.4.4.2
を乗します。
ステップ 3.5.2.4.5
分子を簡約します。
ステップ 3.5.2.4.5.1
根の積の法則を使ってまとめます。
ステップ 3.5.2.4.5.2
にをかけます。
ステップ 3.6
をに等しくし、を解きます。
ステップ 3.6.1
がに等しいとします。
ステップ 3.6.2
についてを解きます。
ステップ 3.6.2.1
方程式の両辺にを足します。
ステップ 3.6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 3.7
最終解はを真にするすべての値です。
ステップ 4
をに代入します。
ステップ 5
ステップ 5.1
方程式の両辺を乗し、左辺の分数指数を消去します。
ステップ 5.2
指数を簡約します。
ステップ 5.2.1
左辺を簡約します。
ステップ 5.2.1.1
を簡約します。
ステップ 5.2.1.1.1
の指数を掛けます。
ステップ 5.2.1.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 5.2.1.1.1.2
の共通因数を約分します。
ステップ 5.2.1.1.1.2.1
共通因数を約分します。
ステップ 5.2.1.1.1.2.2
式を書き換えます。
ステップ 5.2.1.1.2
簡約します。
ステップ 5.2.2
右辺を簡約します。
ステップ 5.2.2.1
を正数乗し、を得ます。
ステップ 6
ステップ 6.1
方程式の両辺を乗し、左辺の分数指数を消去します。
ステップ 6.2
指数を簡約します。
ステップ 6.2.1
左辺を簡約します。
ステップ 6.2.1.1
を簡約します。
ステップ 6.2.1.1.1
の指数を掛けます。
ステップ 6.2.1.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 6.2.1.1.1.2
の共通因数を約分します。
ステップ 6.2.1.1.1.2.1
共通因数を約分します。
ステップ 6.2.1.1.1.2.2
式を書き換えます。
ステップ 6.2.1.1.2
簡約します。
ステップ 6.2.2
右辺を簡約します。
ステップ 6.2.2.1
を簡約します。
ステップ 6.2.2.1.1
積の法則をに当てはめます。
ステップ 6.2.2.1.2
をに書き換えます。
ステップ 6.2.2.1.2.1
を利用し、をに書き換えます。
ステップ 6.2.2.1.2.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 6.2.2.1.2.3
とをまとめます。
ステップ 6.2.2.1.2.4
の共通因数を約分します。
ステップ 6.2.2.1.2.4.1
共通因数を約分します。
ステップ 6.2.2.1.2.4.2
式を書き換えます。
ステップ 6.2.2.1.2.5
指数を求めます。
ステップ 6.2.2.1.3
を乗します。
ステップ 6.2.2.1.4
との共通因数を約分します。
ステップ 6.2.2.1.4.1
をで因数分解します。
ステップ 6.2.2.1.4.2
共通因数を約分します。
ステップ 6.2.2.1.4.2.1
をで因数分解します。
ステップ 6.2.2.1.4.2.2
共通因数を約分します。
ステップ 6.2.2.1.4.2.3
式を書き換えます。
ステップ 7
ステップ 7.1
方程式の両辺を乗し、左辺の分数指数を消去します。
ステップ 7.2
指数を簡約します。
ステップ 7.2.1
左辺を簡約します。
ステップ 7.2.1.1
を簡約します。
ステップ 7.2.1.1.1
の指数を掛けます。
ステップ 7.2.1.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 7.2.1.1.1.2
の共通因数を約分します。
ステップ 7.2.1.1.1.2.1
共通因数を約分します。
ステップ 7.2.1.1.1.2.2
式を書き換えます。
ステップ 7.2.1.1.2
簡約します。
ステップ 7.2.2
右辺を簡約します。
ステップ 7.2.2.1
をに書き換えます。
ステップ 7.2.2.1.1
を利用し、をに書き換えます。
ステップ 7.2.2.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 7.2.2.1.3
とをまとめます。
ステップ 7.2.2.1.4
の共通因数を約分します。
ステップ 7.2.2.1.4.1
共通因数を約分します。
ステップ 7.2.2.1.4.2
式を書き換えます。
ステップ 7.2.2.1.5
指数を求めます。
ステップ 8
すべての解をまとめます。
ステップ 9
結果は複数の形で表すことができます。
完全形:
10進法形式:
帯分数形: