問題を入力...
有限数学 例
ステップ 1
ステップ 1.1
をで因数分解します。
ステップ 1.1.1
をで因数分解します。
ステップ 1.1.2
をで因数分解します。
ステップ 1.1.3
をで因数分解します。
ステップ 1.1.4
をで因数分解します。
ステップ 1.1.5
をで因数分解します。
ステップ 1.1.6
をで因数分解します。
ステップ 1.1.7
をで因数分解します。
ステップ 1.2
各群から最大公約数を因数分解します。
ステップ 1.2.1
前の2項と後ろの2項をまとめます。
ステップ 1.2.2
各群から最大公約数を因数分解します。
ステップ 1.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 1.4
をに書き換えます。
ステップ 1.5
をに書き換えます。
ステップ 1.6
因数分解。
ステップ 1.6.1
因数分解。
ステップ 1.6.1.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.6.1.2
不要な括弧を削除します。
ステップ 1.6.2
不要な括弧を削除します。
ステップ 2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3
がに等しいとします。
ステップ 4
ステップ 4.1
がに等しいとします。
ステップ 4.2
方程式の両辺からを引きます。
ステップ 5
ステップ 5.1
がに等しいとします。
ステップ 5.2
についてを解きます。
ステップ 5.2.1
方程式の両辺からを引きます。
ステップ 5.2.2
の各項をで割り、簡約します。
ステップ 5.2.2.1
の各項をで割ります。
ステップ 5.2.2.2
左辺を簡約します。
ステップ 5.2.2.2.1
の共通因数を約分します。
ステップ 5.2.2.2.1.1
共通因数を約分します。
ステップ 5.2.2.2.1.2
をで割ります。
ステップ 5.2.2.3
右辺を簡約します。
ステップ 5.2.2.3.1
分数の前に負数を移動させます。
ステップ 6
ステップ 6.1
がに等しいとします。
ステップ 6.2
についてを解きます。
ステップ 6.2.1
方程式の両辺にを足します。
ステップ 6.2.2
の各項をで割り、簡約します。
ステップ 6.2.2.1
の各項をで割ります。
ステップ 6.2.2.2
左辺を簡約します。
ステップ 6.2.2.2.1
の共通因数を約分します。
ステップ 6.2.2.2.1.1
共通因数を約分します。
ステップ 6.2.2.2.1.2
をで割ります。
ステップ 7
最終解はを真にするすべての値です。
ステップ 8
結果は複数の形で表すことができます。
完全形:
10進法形式: