問題を入力...
有限数学 例
ステップ 1
ステップ 1.1
1番目の区分の区間を求めるために、絶対値の中が負でない場所を求めます。
ステップ 1.2
不等式を解きます。
ステップ 1.2.1
不等式の両辺からを引きます。
ステップ 1.2.2
の各項をで割り、簡約します。
ステップ 1.2.2.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 1.2.2.2
左辺を簡約します。
ステップ 1.2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 1.2.2.2.2
をで割ります。
ステップ 1.2.2.3
右辺を簡約します。
ステップ 1.2.2.3.1
2つの負の値を割ると正の値になります。
ステップ 1.2.2.3.2
をで割ります。
ステップ 1.3
が負でない区分では、絶対値を削除します。
ステップ 1.4
2番目の区分の区間を求めるために、絶対値の中が負になる場所を求めます。
ステップ 1.5
不等式を解きます。
ステップ 1.5.1
不等式の両辺からを引きます。
ステップ 1.5.2
の各項をで割り、簡約します。
ステップ 1.5.2.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 1.5.2.2
左辺を簡約します。
ステップ 1.5.2.2.1
2つの負の値を割ると正の値になります。
ステップ 1.5.2.2.2
をで割ります。
ステップ 1.5.2.3
右辺を簡約します。
ステップ 1.5.2.3.1
2つの負の値を割ると正の値になります。
ステップ 1.5.2.3.2
をで割ります。
ステップ 1.6
が負である区分では、絶対値を取り除きを掛けます。
ステップ 1.7
区分で書きます。
ステップ 1.8
を簡約します。
ステップ 1.8.1
分配則を当てはめます。
ステップ 1.8.2
を掛けます。
ステップ 1.8.2.1
にをかけます。
ステップ 1.8.2.2
にをかけます。
ステップ 2
ステップ 2.1
についてを解きます。
ステップ 2.1.1
を含まないすべての項を不等式の右辺に移動させます。
ステップ 2.1.1.1
不等式の両辺からを引きます。
ステップ 2.1.1.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.1.1.3
とをまとめます。
ステップ 2.1.1.4
公分母の分子をまとめます。
ステップ 2.1.1.5
分子を簡約します。
ステップ 2.1.1.5.1
にをかけます。
ステップ 2.1.1.5.2
からを引きます。
ステップ 2.1.2
の各項をで割り、簡約します。
ステップ 2.1.2.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 2.1.2.2
左辺を簡約します。
ステップ 2.1.2.2.1
2つの負の値を割ると正の値になります。
ステップ 2.1.2.2.2
をで割ります。
ステップ 2.1.2.3
右辺を簡約します。
ステップ 2.1.2.3.1
の分母からマイナス1を移動させます。
ステップ 2.1.2.3.2
をに書き換えます。
ステップ 2.2
との交点を求めます。
ステップ 3
ステップ 3.1
を含まないすべての項を不等式の右辺に移動させます。
ステップ 3.1.1
不等式の両辺にを足します。
ステップ 3.1.2
を公分母のある分数として書くために、を掛けます。
ステップ 3.1.3
とをまとめます。
ステップ 3.1.4
公分母の分子をまとめます。
ステップ 3.1.5
分子を簡約します。
ステップ 3.1.5.1
にをかけます。
ステップ 3.1.5.2
とをたし算します。
ステップ 3.2
との交点を求めます。
ステップ 4
解の和集合を求めます。
ステップ 5
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 6