有限数学 例

定義域と値域を求める 4-x+の平方根x^2-9=yの平方根
ステップ 1
方程式をとして書き換えます。
ステップ 2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
に書き換えます。
ステップ 2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3
の被開数を以上として、式が定義である場所を求めます。
ステップ 4
について解きます。
タップして手順をさらに表示してください…
ステップ 4.1
不等式の両辺からを引きます。
ステップ 4.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 4.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
2つの負の値を割ると正の値になります。
ステップ 4.2.2.2
で割ります。
ステップ 4.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.3.1
で割ります。
ステップ 5
の被開数を以上として、式が定義である場所を求めます。
ステップ 6
について解きます。
タップして手順をさらに表示してください…
ステップ 6.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6.2
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.2.1
に等しいとします。
ステップ 6.2.2
方程式の両辺からを引きます。
ステップ 6.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.3.1
に等しいとします。
ステップ 6.3.2
方程式の両辺にを足します。
ステップ 6.4
最終解はを真にするすべての値です。
ステップ 6.5
各根を利用して検定区間を作成します。
ステップ 6.6
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 6.6.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 6.6.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 6.6.1.2
を元の不等式ので置き換えます。
ステップ 6.6.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 6.6.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 6.6.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 6.6.2.2
を元の不等式ので置き換えます。
ステップ 6.6.2.3
左辺は右辺より小さいです。つまり、与えられた文は偽です。
False
False
ステップ 6.6.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 6.6.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 6.6.3.2
を元の不等式ので置き換えます。
ステップ 6.6.3.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 6.6.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 6.7
解はすべての真の区間からなります。
または
または
ステップ 7
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 8
値域はすべての有効な値の集合です。グラフを利用して値域を求めます。
解がありません
ステップ 9
定義域と値域を判定します。
解がありません
ステップ 10