有限数学 例

根が区間にあることを証明します (-5,5) , x=4
,
ステップ 1
方程式の両辺からを引きます。
ステップ 2
中間値の定理は、が区間上の実数値連続関数で、の間の数ならば、となるような区間に含まれるがあると述べています。
ステップ 3
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 4
を計算します。
タップして手順をさらに表示してください…
ステップ 4.1
をかけます。
ステップ 4.2
をたし算します。
ステップ 5
を計算します。
タップして手順をさらに表示してください…
ステップ 5.1
をかけます。
ステップ 5.2
からを引きます。
ステップ 6
Since is on the interval , solve the equation for at the root.
タップして手順をさらに表示してください…
ステップ 6.1
方程式をとして書き換えます。
ステップ 6.2
方程式の両辺からを引きます。
ステップ 6.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1
の各項をで割ります。
ステップ 6.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1
2つの負の値を割ると正の値になります。
ステップ 6.3.2.2
で割ります。
ステップ 6.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.3.1
で割ります。
ステップ 7
中間値の定理は、上で連続関数であるので、区間上に根があることを述べています。
区間の根はに位置します。
ステップ 8