有限数学 例

代入による解法 x+y=22 , y=x^2-4x+4
,
ステップ 1
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
のすべての発生をで置き換えます。
ステップ 1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
括弧を削除します。
ステップ 1.2.1.2
からを引きます。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式の両辺からを引きます。
ステップ 2.2
からを引きます。
ステップ 2.3
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.3.2
この整数を利用して因数分解の形を書きます。
ステップ 2.4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.1
に等しいとします。
ステップ 2.5.2
方程式の両辺にを足します。
ステップ 2.6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.6.1
に等しいとします。
ステップ 2.6.2
方程式の両辺からを引きます。
ステップ 2.7
最終解はを真にするすべての値です。
ステップ 3
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 3.1
のすべての発生をで置き換えます。
ステップ 3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1.1
乗します。
ステップ 3.2.1.1.2
をかけます。
ステップ 3.2.1.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.2.1
からを引きます。
ステップ 3.2.1.2.2
をたし算します。
ステップ 4
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
のすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1.1
乗します。
ステップ 4.2.1.1.2
をかけます。
ステップ 4.2.1.2
数を加えて簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.2.1
をたし算します。
ステップ 4.2.1.2.2
をたし算します。
ステップ 5
式の解は、有効な解である順序対の完全集合です。
ステップ 6
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 7