問題を入力...
有限数学 例
ステップ 1
ステップ 1.1
離散型確率変数は個別の値(、、など)の集合をとります。その確率分布は、各可能な値に確率を割り当てる。各について、確率はとの間に含まれ、すべての可能な値に対する確率の合計はに等しくなります。
1. 各は、です。
2. .
ステップ 1.2
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.3
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.4
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.5
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.6
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.7
は以下です。確率分布の最初の性質を満たしていません。
は以下です
ステップ 1.8
確率は、すべての値についてとの間になく、確率分布の1番目の特性を満たしません。
表は確率分布の2つの特性を満たしていません。
表は確率分布の2つの特性を満たしていません。
ステップ 2
表は確率分布の2つの特性を満たしていません。つまり、与えられた表を利用して標準偏差は求められません。
標準偏差を求められません