有限数学 例

線形かを判断する x^2)^2=1の立方根x^2+(y-
ステップ 1
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
に書き換えます。
ステップ 1.3.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 1.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.4.2
方程式の両辺にを足します。
ステップ 1.4.3
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.4.4
方程式の両辺にを足します。
ステップ 1.4.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2
一次方程式とは直線の方程式であり、一次方程式の次数はその変数ごとにまたはでなければならないことを意味します。ここでは、方程式の変数の次数が一次方程式の定義に反します。つまり方程式は一次方程式ではありません。
線形ではありません