微分積分 例

導関数を用いて増減する場所を求める xe^x
ステップ 1
を関数で書きます。
ステップ 2
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 2.1.2
=のとき、であるという指数法則を使って微分します。
ステップ 2.1.3
べき乗則を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.3.1
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.3.2
をかけます。
ステップ 2.2
に関するの一次導関数はです。
ステップ 3
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
一次導関数をに等しくします。
ステップ 3.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
で因数分解します。
ステップ 3.2.2
を掛けます。
ステップ 3.2.3
で因数分解します。
ステップ 3.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.4.1
に等しいとします。
ステップ 3.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.4.2.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.4.2.2
が未定義なので、方程式は解くことができません。
未定義
ステップ 3.4.2.3
の解はありません
解がありません
解がありません
解がありません
ステップ 3.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.5.1
に等しいとします。
ステップ 3.5.2
方程式の両辺からを引きます。
ステップ 3.6
最終解はを真にするすべての値です。
ステップ 4
微分係数がに等しくなるような値はです。
ステップ 5
微分係数または未定義にする点を求めた後、が増加・減少している場所を確認する間隔はです。
ステップ 6
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
負の指数法則を利用して式を書き換えます。
ステップ 6.2.1.2
をまとめます。
ステップ 6.2.1.3
分数の前に負数を移動させます。
ステップ 6.2.1.4
負の指数法則を利用して式を書き換えます。
ステップ 6.2.2
分数をまとめます。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
公分母の分子をまとめます。
ステップ 6.2.2.2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.2.1
をたし算します。
ステップ 6.2.2.2.2
分数の前に負数を移動させます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 7
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
にべき乗するものはとなります。
ステップ 7.2.1.2
をかけます。
ステップ 7.2.1.3
にべき乗するものはとなります。
ステップ 7.2.2
をたし算します。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 8
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 9