微分積分 例

合計を評価する n=0から(1/2)^nのinfinityまでの和
ステップ 1
が第1項、が連続する項の間の比の時、無限等比級数の和は公式を利用して求められます。
ステップ 2
公式に代入し簡約することで、連続する項の比を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
の公式に代入します。
ステップ 2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.1
で因数分解します。
ステップ 2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
を掛けます。
ステップ 2.2.2.2
共通因数を約分します。
ステップ 2.2.2.3
式を書き換えます。
ステップ 2.2.2.4
で割ります。
ステップ 3
Since , the series converges.
ステップ 4
下界に代入し簡約することで級数の第1項を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
に代入します。
ステップ 4.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
積の法則をに当てはめます。
ステップ 4.2.2
にべき乗するものはとなります。
ステップ 4.2.3
にべき乗するものはとなります。
ステップ 4.2.4
で割ります。
ステップ 5
比と第1項の値を和の公式に代入します。
ステップ 6
簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.1
を公分母をもつ分数で書きます。
ステップ 6.1.2
公分母の分子をまとめます。
ステップ 6.1.3
からを引きます。
ステップ 6.2
分子に分母の逆数を掛けます。
ステップ 6.3
をかけます。