問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
とします。を求めます。
ステップ 1.1.1
を微分します。
ステップ 1.1.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.2.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2.2
に関するの微分係数はです。
ステップ 1.1.2.3
のすべての発生をで置き換えます。
ステップ 1.1.3
微分します。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
にをかけます。
ステップ 1.1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.4
にをかけます。
ステップ 1.2
のに下限値を代入します。
ステップ 1.3
簡約します。
ステップ 1.3.1
にをかけます。
ステップ 1.3.2
の厳密値はです。
ステップ 1.4
のに上限値を代入します。
ステップ 1.5
簡約します。
ステップ 1.5.1
の共通因数を約分します。
ステップ 1.5.1.1
をで因数分解します。
ステップ 1.5.1.2
共通因数を約分します。
ステップ 1.5.1.3
式を書き換えます。
ステップ 1.5.2
の厳密値はです。
ステップ 1.6
とについて求めた値は定積分を求めるために利用します。
ステップ 1.7
、、および新たな積分の極限を利用して問題を書き換えます。
ステップ 2
ステップ 2.1
分数の前に負数を移動させます。
ステップ 2.2
とをまとめます。
ステップ 2.3
負の指数法則を利用してを分母に移動させます。
ステップ 3
はに対して定数なので、を積分の外に移動させます。
ステップ 4
はに対して定数なので、を積分の外に移動させます。
ステップ 5
ステップ 5.1
を乗して分母の外に移動させます。
ステップ 5.2
の指数を掛けます。
ステップ 5.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 5.2.2
にをかけます。
ステップ 6
べき乗則では、のに関する積分はです。
ステップ 7
ステップ 7.1
およびでの値を求めます。
ステップ 7.2
簡約します。
ステップ 7.2.1
底を逆数に書き換えて、指数の符号を変更します。
ステップ 7.2.2
を乗します。
ステップ 7.2.3
にをかけます。
ステップ 7.2.4
とをまとめます。
ステップ 7.2.5
との共通因数を約分します。
ステップ 7.2.5.1
をで因数分解します。
ステップ 7.2.5.2
共通因数を約分します。
ステップ 7.2.5.2.1
をで因数分解します。
ステップ 7.2.5.2.2
共通因数を約分します。
ステップ 7.2.5.2.3
式を書き換えます。
ステップ 7.2.5.2.4
をで割ります。
ステップ 7.2.6
1のすべての数の累乗は1です。
ステップ 7.2.7
にをかけます。
ステップ 7.2.8
を公分母のある分数として書くために、を掛けます。
ステップ 7.2.9
とをまとめます。
ステップ 7.2.10
公分母の分子をまとめます。
ステップ 7.2.11
分子を簡約します。
ステップ 7.2.11.1
にをかけます。
ステップ 7.2.11.2
とをたし算します。
ステップ 7.2.12
分数の前に負数を移動させます。
ステップ 7.2.13
にをかけます。
ステップ 7.2.14
にをかけます。
ステップ 7.2.15
にをかけます。
ステップ 7.2.16
にをかけます。
ステップ 8
結果は複数の形で表すことができます。
完全形:
10進法形式:
帯分数形: