微分積分 例

積分値を求める 0からxに対して(1-x)^9の1までの積分
ステップ 1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
を微分します。
ステップ 1.1.2
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
総和則では、に関する積分はです。
ステップ 1.1.2.2
について定数なので、についての微分係数はです。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
をかけます。
ステップ 1.1.4
からを引きます。
ステップ 1.2
に下限値を代入します。
ステップ 1.3
からを引きます。
ステップ 1.4
に上限値を代入します。
ステップ 1.5
簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1
をかけます。
ステップ 1.5.2
からを引きます。
ステップ 1.6
について求めた値は定積分を求めるために利用します。
ステップ 1.7
、および新たな積分の極限を利用して問題を書き換えます。
ステップ 2
に対して定数なので、を積分の外に移動させます。
ステップ 3
べき乗則では、に関する積分はです。
ステップ 4
をまとめます。
ステップ 5
代入し簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
およびの値を求めます。
ステップ 5.2
簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
を正数乗し、を得ます。
ステップ 5.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
で因数分解します。
ステップ 5.2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.2.1
で因数分解します。
ステップ 5.2.2.2.2
共通因数を約分します。
ステップ 5.2.2.2.3
式を書き換えます。
ステップ 5.2.2.2.4
で割ります。
ステップ 5.2.3
1のすべての数の累乗は1です。
ステップ 5.2.4
からを引きます。
ステップ 5.2.5
をかけます。
ステップ 5.2.6
をかけます。
ステップ 6
結果は複数の形で表すことができます。
完全形:
10進法形式:
ステップ 7