微分積分 例

積分値を求める -pi/2からxに対して2x+cos(x)のpi/2までの積分
ステップ 1
単一積分を複数積分に分割します。
ステップ 2
に対して定数なので、を積分の外に移動させます。
ステップ 3
べき乗則では、に関する積分はです。
ステップ 4
をまとめます。
ステップ 5
に関する積分はです。
ステップ 6
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
代入し簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.1
およびの値を求めます。
ステップ 6.1.2
およびの値を求めます。
ステップ 6.1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.3.1
で因数分解します。
ステップ 6.1.3.2
積の法則をに当てはめます。
ステップ 6.1.3.3
乗します。
ステップ 6.1.3.4
をかけます。
ステップ 6.1.3.5
公分母の分子をまとめます。
ステップ 6.1.3.6
からを引きます。
ステップ 6.1.3.7
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.1.3.7.1
で因数分解します。
ステップ 6.1.3.7.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.1.3.7.2.1
で因数分解します。
ステップ 6.1.3.7.2.2
共通因数を約分します。
ステップ 6.1.3.7.2.3
式を書き換えます。
ステップ 6.1.3.7.2.4
で割ります。
ステップ 6.1.3.8
をかけます。
ステップ 6.1.3.9
をたし算します。
ステップ 6.2
の厳密値はです。
ステップ 6.3
簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1
角度が以上より小さくなるまでの回転を加えます。
ステップ 6.3.2
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。正弦は第四象限で負であるため、式を負にします。
ステップ 6.3.3
の厳密値はです。
ステップ 6.3.4
をかけます。
ステップ 6.3.5
をかけます。
ステップ 6.3.6
をたし算します。