微分積分 例

積分値を求める pi/4からxに対してsin(x)^3cos(x)のpi/2までの積分
ステップ 1
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
を微分します。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.2
に下限値を代入します。
ステップ 1.3
の厳密値はです。
ステップ 1.4
に上限値を代入します。
ステップ 1.5
の厳密値はです。
ステップ 1.6
について求めた値は定積分を求めるために利用します。
ステップ 1.7
、および新たな積分の極限を利用して問題を書き換えます。
ステップ 2
べき乗則では、に関する積分はです。
ステップ 3
代入し簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
およびの値を求めます。
ステップ 3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
1のすべての数の累乗は1です。
ステップ 3.2.2
をかけます。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.1
積の法則をに当てはめます。
ステップ 4.1.2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
を利用し、に書き換えます。
ステップ 4.1.2.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.1.2.1.3
をまとめます。
ステップ 4.1.2.1.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.4.1
で因数分解します。
ステップ 4.1.2.1.4.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.4.2.1
で因数分解します。
ステップ 4.1.2.1.4.2.2
共通因数を約分します。
ステップ 4.1.2.1.4.2.3
式を書き換えます。
ステップ 4.1.2.1.4.2.4
で割ります。
ステップ 4.1.2.2
乗します。
ステップ 4.1.3
乗します。
ステップ 4.1.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.4.1
の先頭の負を分子に移動させます。
ステップ 4.1.4.2
共通因数を約分します。
ステップ 4.1.4.3
式を書き換えます。
ステップ 4.2
を公分母のある分数として書くために、を掛けます。
ステップ 4.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 4.3.1
をかけます。
ステップ 4.3.2
をかけます。
ステップ 4.4
公分母の分子をまとめます。
ステップ 4.5
からを引きます。
ステップ 5
結果は複数の形で表すことができます。
完全形:
10進法形式: