問題を入力...
微分積分 例
ステップ 1
を関数で書きます。
ステップ 2
ステップ 2.1
二次導関数を求めます。
ステップ 2.1.1
一次導関数を求めます。
ステップ 2.1.1.1
に関するの微分係数はです。
ステップ 2.1.1.2
項を並べ替えます。
ステップ 2.1.2
二次導関数を求めます。
ステップ 2.1.2.1
をに書き換えます。
ステップ 2.1.2.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.1.2.2.1
連鎖律を当てはめるために、をとします。
ステップ 2.1.2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.1.2.2.3
のすべての発生をで置き換えます。
ステップ 2.1.2.3
微分します。
ステップ 2.1.2.3.1
総和則では、のに関する積分はです。
ステップ 2.1.2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.1.2.3.3
はについて定数なので、についての微分係数はです。
ステップ 2.1.2.3.4
式を簡約します。
ステップ 2.1.2.3.4.1
とをたし算します。
ステップ 2.1.2.3.4.2
にをかけます。
ステップ 2.1.2.4
簡約します。
ステップ 2.1.2.4.1
負の指数法則を利用して式を書き換えます。
ステップ 2.1.2.4.2
項をまとめます。
ステップ 2.1.2.4.2.1
とをまとめます。
ステップ 2.1.2.4.2.2
分数の前に負数を移動させます。
ステップ 2.1.2.4.2.3
とをまとめます。
ステップ 2.1.2.4.2.4
をの左に移動させます。
ステップ 2.1.3
に関するの二次導関数はです。
ステップ 2.2
二次導関数をと等しくし、次に方程式を解きます。
ステップ 2.2.1
二次導関数をに等しくします。
ステップ 2.2.2
分子を0に等しくします。
ステップ 2.2.3
の各項をで割り、簡約します。
ステップ 2.2.3.1
の各項をで割ります。
ステップ 2.2.3.2
左辺を簡約します。
ステップ 2.2.3.2.1
の共通因数を約分します。
ステップ 2.2.3.2.1.1
共通因数を約分します。
ステップ 2.2.3.2.1.2
をで割ります。
ステップ 2.2.3.3
右辺を簡約します。
ステップ 2.2.3.3.1
をで割ります。
ステップ 3
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 4
二次導関数が0になる値の周りの区間と未定義値の区間を作成します。
ステップ 5
ステップ 5.1
式の変数をで置換えます。
ステップ 5.2
結果を簡約します。
ステップ 5.2.1
にをかけます。
ステップ 5.2.2
分母を簡約します。
ステップ 5.2.2.1
を乗します。
ステップ 5.2.2.2
とをたし算します。
ステップ 5.2.2.3
を乗します。
ステップ 5.2.3
分数の前に負数を移動させます。
ステップ 5.2.4
最終的な答えはです。
ステップ 5.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
にをかけます。
ステップ 6.2.2
分母を簡約します。
ステップ 6.2.2.1
を乗します。
ステップ 6.2.2.2
とをたし算します。
ステップ 6.2.2.3
を乗します。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
が負なので、区間でグラフが下に凹です。
が負なのでで下に凹します。
が負なのでで下に凹します。
ステップ 7
二次導関数が負のときグラフは下に凹で、二次導関数が正のときグラフは上に凹です。
が正なのでで上に凹します。
が負なのでで下に凹します。
ステップ 8