微分積分 例

凹面を求める f(x)=3x^4-4x^3-12x^2+5
ステップ 1
Find the values where the second derivative is equal to .
タップして手順をさらに表示してください…
ステップ 1.1
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
総和則では、に関する積分はです。
ステップ 1.1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.2.3
をかけます。
ステップ 1.1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.3.3
をかけます。
ステップ 1.1.1.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.1.4.3
をかけます。
ステップ 1.1.1.5
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.5.1
について定数なので、についての微分係数はです。
ステップ 1.1.1.5.2
をたし算します。
ステップ 1.1.2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
総和則では、に関する積分はです。
ステップ 1.1.2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.2.3
をかけます。
ステップ 1.1.2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3.3
をかけます。
ステップ 1.1.2.4
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.4.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.4.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.4.3
をかけます。
ステップ 1.1.3
に関するの二次導関数はです。
ステップ 1.2
二次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
二次導関数をに等しくします。
ステップ 1.2.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
で因数分解します。
ステップ 1.2.2.2
で因数分解します。
ステップ 1.2.2.3
で因数分解します。
ステップ 1.2.2.4
で因数分解します。
ステップ 1.2.2.5
で因数分解します。
ステップ 1.2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
の各項をで割ります。
ステップ 1.2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.3.2.1.1
共通因数を約分します。
ステップ 1.2.3.2.1.2
で割ります。
ステップ 1.2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.3.3.1
で割ります。
ステップ 1.2.4
二次方程式の解の公式を利用して解を求めます。
ステップ 1.2.5
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 1.2.6
簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.6.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.6.1.1
乗します。
ステップ 1.2.6.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1.2.1
をかけます。
ステップ 1.2.6.1.2.2
をかけます。
ステップ 1.2.6.1.3
をたし算します。
ステップ 1.2.6.1.4
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1.4.1
で因数分解します。
ステップ 1.2.6.1.4.2
に書き換えます。
ステップ 1.2.6.1.5
累乗根の下から項を取り出します。
ステップ 1.2.6.2
をかけます。
ステップ 1.2.6.3
を簡約します。
ステップ 1.2.7
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.7.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.7.1.1
乗します。
ステップ 1.2.7.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.7.1.2.1
をかけます。
ステップ 1.2.7.1.2.2
をかけます。
ステップ 1.2.7.1.3
をたし算します。
ステップ 1.2.7.1.4
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.2.7.1.4.1
で因数分解します。
ステップ 1.2.7.1.4.2
に書き換えます。
ステップ 1.2.7.1.5
累乗根の下から項を取り出します。
ステップ 1.2.7.2
をかけます。
ステップ 1.2.7.3
を簡約します。
ステップ 1.2.7.4
に変更します。
ステップ 1.2.8
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.8.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.8.1.1
乗します。
ステップ 1.2.8.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.8.1.2.1
をかけます。
ステップ 1.2.8.1.2.2
をかけます。
ステップ 1.2.8.1.3
をたし算します。
ステップ 1.2.8.1.4
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.2.8.1.4.1
で因数分解します。
ステップ 1.2.8.1.4.2
に書き換えます。
ステップ 1.2.8.1.5
累乗根の下から項を取り出します。
ステップ 1.2.8.2
をかけます。
ステップ 1.2.8.3
を簡約します。
ステップ 1.2.8.4
に変更します。
ステップ 1.2.9
最終的な答えは両方の解の組み合わせです。
ステップ 2
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 3
二次導関数が0になる値の周りの区間と未定義値の区間を作成します。
ステップ 4
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 4.1
式の変数で置換えます。
ステップ 4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
乗します。
ステップ 4.2.1.2
をかけます。
ステップ 4.2.1.3
をかけます。
ステップ 4.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
をたし算します。
ステップ 4.2.2.2
からを引きます。
ステップ 4.2.3
最終的な答えはです。
ステップ 4.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 5
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
を正数乗し、を得ます。
ステップ 5.2.1.2
をかけます。
ステップ 5.2.1.3
をかけます。
ステップ 5.2.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
をたし算します。
ステップ 5.2.2.2
からを引きます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
が負なので、区間でグラフが下に凹です。
が負なのでで下に凹します。
が負なのでで下に凹します。
ステップ 6
区間から任意の数を二次導関数に代入し、凹を求め判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
乗します。
ステップ 6.2.1.2
をかけます。
ステップ 6.2.1.3
をかけます。
ステップ 6.2.2
数を引いて簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
からを引きます。
ステップ 6.2.2.2
からを引きます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 7
二次導関数が負のときグラフは下に凹で、二次導関数が正のときグラフは上に凹です。
が正なのでで上に凹します。
が負なのでで下に凹します。
が正なのでで上に凹します。
ステップ 8