問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
二次導関数を求めます。
ステップ 1.1.1
一次導関数を求めます。
ステップ 1.1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.1.2
の値を求めます。
ステップ 1.1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.2.3
にをかけます。
ステップ 1.1.1.3
の値を求めます。
ステップ 1.1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.3.3
にをかけます。
ステップ 1.1.1.4
の値を求めます。
ステップ 1.1.1.4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.4.3
にをかけます。
ステップ 1.1.1.5
定数の規則を使って微分します。
ステップ 1.1.1.5.1
はについて定数なので、についての微分係数はです。
ステップ 1.1.1.5.2
とをたし算します。
ステップ 1.1.2
二次導関数を求めます。
ステップ 1.1.2.1
総和則では、のに関する積分はです。
ステップ 1.1.2.2
の値を求めます。
ステップ 1.1.2.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.2.3
にをかけます。
ステップ 1.1.2.3
の値を求めます。
ステップ 1.1.2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3.3
にをかけます。
ステップ 1.1.2.4
の値を求めます。
ステップ 1.1.2.4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.4.3
にをかけます。
ステップ 1.1.3
に関するの二次導関数はです。
ステップ 1.2
二次導関数をと等しくし、次に方程式を解きます。
ステップ 1.2.1
二次導関数をに等しくします。
ステップ 1.2.2
をで因数分解します。
ステップ 1.2.2.1
をで因数分解します。
ステップ 1.2.2.2
をで因数分解します。
ステップ 1.2.2.3
をで因数分解します。
ステップ 1.2.2.4
をで因数分解します。
ステップ 1.2.2.5
をで因数分解します。
ステップ 1.2.3
の各項をで割り、簡約します。
ステップ 1.2.3.1
の各項をで割ります。
ステップ 1.2.3.2
左辺を簡約します。
ステップ 1.2.3.2.1
の共通因数を約分します。
ステップ 1.2.3.2.1.1
共通因数を約分します。
ステップ 1.2.3.2.1.2
をで割ります。
ステップ 1.2.3.3
右辺を簡約します。
ステップ 1.2.3.3.1
をで割ります。
ステップ 1.2.4
二次方程式の解の公式を利用して解を求めます。
ステップ 1.2.5
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 1.2.6
簡約します。
ステップ 1.2.6.1
分子を簡約します。
ステップ 1.2.6.1.1
を乗します。
ステップ 1.2.6.1.2
を掛けます。
ステップ 1.2.6.1.2.1
にをかけます。
ステップ 1.2.6.1.2.2
にをかけます。
ステップ 1.2.6.1.3
とをたし算します。
ステップ 1.2.6.1.4
をに書き換えます。
ステップ 1.2.6.1.4.1
をで因数分解します。
ステップ 1.2.6.1.4.2
をに書き換えます。
ステップ 1.2.6.1.5
累乗根の下から項を取り出します。
ステップ 1.2.6.2
にをかけます。
ステップ 1.2.6.3
を簡約します。
ステップ 1.2.7
式を簡約し、の部の値を求めます。
ステップ 1.2.7.1
分子を簡約します。
ステップ 1.2.7.1.1
を乗します。
ステップ 1.2.7.1.2
を掛けます。
ステップ 1.2.7.1.2.1
にをかけます。
ステップ 1.2.7.1.2.2
にをかけます。
ステップ 1.2.7.1.3
とをたし算します。
ステップ 1.2.7.1.4
をに書き換えます。
ステップ 1.2.7.1.4.1
をで因数分解します。
ステップ 1.2.7.1.4.2
をに書き換えます。
ステップ 1.2.7.1.5
累乗根の下から項を取り出します。
ステップ 1.2.7.2
にをかけます。
ステップ 1.2.7.3
を簡約します。
ステップ 1.2.7.4
をに変更します。
ステップ 1.2.8
式を簡約し、の部の値を求めます。
ステップ 1.2.8.1
分子を簡約します。
ステップ 1.2.8.1.1
を乗します。
ステップ 1.2.8.1.2
を掛けます。
ステップ 1.2.8.1.2.1
にをかけます。
ステップ 1.2.8.1.2.2
にをかけます。
ステップ 1.2.8.1.3
とをたし算します。
ステップ 1.2.8.1.4
をに書き換えます。
ステップ 1.2.8.1.4.1
をで因数分解します。
ステップ 1.2.8.1.4.2
をに書き換えます。
ステップ 1.2.8.1.5
累乗根の下から項を取り出します。
ステップ 1.2.8.2
にをかけます。
ステップ 1.2.8.3
を簡約します。
ステップ 1.2.8.4
をに変更します。
ステップ 1.2.9
最終的な答えは両方の解の組み合わせです。
ステップ 2
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
区間記号:
集合の内包的記法:
ステップ 3
二次導関数が0になる値の周りの区間と未定義値の区間を作成します。
ステップ 4
ステップ 4.1
式の変数をで置換えます。
ステップ 4.2
結果を簡約します。
ステップ 4.2.1
各項を簡約します。
ステップ 4.2.1.1
を乗します。
ステップ 4.2.1.2
にをかけます。
ステップ 4.2.1.3
にをかけます。
ステップ 4.2.2
足し算と引き算で簡約します。
ステップ 4.2.2.1
とをたし算します。
ステップ 4.2.2.2
からを引きます。
ステップ 4.2.3
最終的な答えはです。
ステップ 4.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 5
ステップ 5.1
式の変数をで置換えます。
ステップ 5.2
結果を簡約します。
ステップ 5.2.1
各項を簡約します。
ステップ 5.2.1.1
を正数乗し、を得ます。
ステップ 5.2.1.2
にをかけます。
ステップ 5.2.1.3
にをかけます。
ステップ 5.2.2
足し算と引き算で簡約します。
ステップ 5.2.2.1
とをたし算します。
ステップ 5.2.2.2
からを引きます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
が負なので、区間でグラフが下に凹です。
が負なのでで下に凹します。
が負なのでで下に凹します。
ステップ 6
ステップ 6.1
式の変数をで置換えます。
ステップ 6.2
結果を簡約します。
ステップ 6.2.1
各項を簡約します。
ステップ 6.2.1.1
を乗します。
ステップ 6.2.1.2
にをかけます。
ステップ 6.2.1.3
にをかけます。
ステップ 6.2.2
数を引いて簡約します。
ステップ 6.2.2.1
からを引きます。
ステップ 6.2.2.2
からを引きます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
が正なので、区間でグラフが上に凹です。
が正なのでで上に凹します。
が正なのでで上に凹します。
ステップ 7
二次導関数が負のときグラフは下に凹で、二次導関数が正のときグラフは上に凹です。
が正なのでで上に凹します。
が負なのでで下に凹します。
が正なのでで上に凹します。
ステップ 8