問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
およびのとき、はであるという商の法則を使って微分します。
ステップ 1.1.2
微分します。
ステップ 1.1.2.1
総和則では、のに関する積分はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
はについて定数なので、についての微分係数はです。
ステップ 1.1.2.4
とをたし算します。
ステップ 1.1.3
を乗します。
ステップ 1.1.4
を乗します。
ステップ 1.1.5
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.6
とをたし算します。
ステップ 1.1.7
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.8
にをかけます。
ステップ 1.1.9
簡約します。
ステップ 1.1.9.1
分配則を当てはめます。
ステップ 1.1.9.2
分子を簡約します。
ステップ 1.1.9.2.1
にをかけます。
ステップ 1.1.9.2.2
からを引きます。
ステップ 1.1.9.3
分子を簡約します。
ステップ 1.1.9.3.1
をに書き換えます。
ステップ 1.1.9.3.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.2
二次導関数を求めます。
ステップ 1.2.1
およびのとき、はであるという商の法則を使って微分します。
ステップ 1.2.2
の指数を掛けます。
ステップ 1.2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.2.2.2
にをかけます。
ステップ 1.2.3
およびのとき、はであるという積の法則を使って微分します。
ステップ 1.2.4
微分します。
ステップ 1.2.4.1
総和則では、のに関する積分はです。
ステップ 1.2.4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.4.3
はについて定数なので、についての微分係数はです。
ステップ 1.2.4.4
式を簡約します。
ステップ 1.2.4.4.1
とをたし算します。
ステップ 1.2.4.4.2
にをかけます。
ステップ 1.2.4.5
総和則では、のに関する積分はです。
ステップ 1.2.4.6
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.4.7
はについて定数なので、についての微分係数はです。
ステップ 1.2.4.8
項を加えて簡約します。
ステップ 1.2.4.8.1
とをたし算します。
ステップ 1.2.4.8.2
にをかけます。
ステップ 1.2.4.8.3
とをたし算します。
ステップ 1.2.4.8.4
数を引いて簡約します。
ステップ 1.2.4.8.4.1
からを引きます。
ステップ 1.2.4.8.4.2
とをたし算します。
ステップ 1.2.5
指数を足してにを掛けます。
ステップ 1.2.5.1
を移動させます。
ステップ 1.2.5.2
にをかけます。
ステップ 1.2.5.2.1
を乗します。
ステップ 1.2.5.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.2.5.3
とをたし算します。
ステップ 1.2.6
をの左に移動させます。
ステップ 1.2.7
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.8
にをかけます。
ステップ 1.2.9
簡約します。
ステップ 1.2.9.1
分配則を当てはめます。
ステップ 1.2.9.2
分子を簡約します。
ステップ 1.2.9.2.1
各項を簡約します。
ステップ 1.2.9.2.1.1
にをかけます。
ステップ 1.2.9.2.1.2
分配法則(FOIL法)を使ってを展開します。
ステップ 1.2.9.2.1.2.1
分配則を当てはめます。
ステップ 1.2.9.2.1.2.2
分配則を当てはめます。
ステップ 1.2.9.2.1.2.3
分配則を当てはめます。
ステップ 1.2.9.2.1.3
簡約し、同類項をまとめます。
ステップ 1.2.9.2.1.3.1
各項を簡約します。
ステップ 1.2.9.2.1.3.1.1
指数を足してにを掛けます。
ステップ 1.2.9.2.1.3.1.1.1
を移動させます。
ステップ 1.2.9.2.1.3.1.1.2
にをかけます。
ステップ 1.2.9.2.1.3.1.2
にをかけます。
ステップ 1.2.9.2.1.3.1.3
にをかけます。
ステップ 1.2.9.2.1.3.2
からを引きます。
ステップ 1.2.9.2.1.3.3
とをたし算します。
ステップ 1.2.9.2.1.4
分配則を当てはめます。
ステップ 1.2.9.2.1.5
指数を足してにを掛けます。
ステップ 1.2.9.2.1.5.1
を移動させます。
ステップ 1.2.9.2.1.5.2
にをかけます。
ステップ 1.2.9.2.1.5.2.1
を乗します。
ステップ 1.2.9.2.1.5.2.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.2.9.2.1.5.3
とをたし算します。
ステップ 1.2.9.2.2
からを引きます。
ステップ 1.2.9.2.3
とをたし算します。
ステップ 1.2.9.3
との共通因数を約分します。
ステップ 1.2.9.3.1
をで因数分解します。
ステップ 1.2.9.3.2
共通因数を約分します。
ステップ 1.2.9.3.2.1
をで因数分解します。
ステップ 1.2.9.3.2.2
共通因数を約分します。
ステップ 1.2.9.3.2.3
式を書き換えます。
ステップ 1.3
に関するの二次導関数はです。
ステップ 2
ステップ 2.1
二次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
なので、解はありません。
解がありません
解がありません
ステップ 3
二次導関数がに等しくなるような値が見つかりません。
変曲点がありません