微分積分 例

変曲点を求める xe^x
ステップ 1
を関数で書きます。
ステップ 2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
およびのとき、であるという積の法則を使って微分します。
ステップ 2.1.2
=のとき、であるという指数法則を使って微分します。
ステップ 2.1.3
べき乗則を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.3.1
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.3.2
をかけます。
ステップ 2.2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.1
総和則では、に関する積分はです。
ステップ 2.2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
およびのとき、であるという積の法則を使って微分します。
ステップ 2.2.2.2
=のとき、であるという指数法則を使って微分します。
ステップ 2.2.2.3
のとき、であるというべき乗則を使って微分します。
ステップ 2.2.2.4
をかけます。
ステップ 2.2.3
=のとき、であるという指数法則を使って微分します。
ステップ 2.2.4
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.4.1
をたし算します。
ステップ 2.2.4.2
項を並べ替えます。
ステップ 2.2.4.3
の因数を並べ替えます。
ステップ 2.3
に関するの二次導関数はです。
ステップ 3
二次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
二次導関数をに等しくします。
ステップ 3.2
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
で因数分解します。
ステップ 3.2.2
で因数分解します。
ステップ 3.2.3
で因数分解します。
ステップ 3.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.4.1
に等しいとします。
ステップ 3.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.4.2.1
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.4.2.2
が未定義なので、方程式は解くことができません。
未定義
ステップ 3.4.2.3
の解はありません
解がありません
解がありません
解がありません
ステップ 3.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.5.1
に等しいとします。
ステップ 3.5.2
方程式の両辺からを引きます。
ステップ 3.6
最終解はを真にするすべての値です。
ステップ 4
二次導関数がである点を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
に代入し、の値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
式の変数で置換えます。
ステップ 4.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
負の指数法則を利用して式を書き換えます。
ステップ 4.1.2.2
をまとめます。
ステップ 4.1.2.3
分数の前に負数を移動させます。
ステップ 4.1.2.4
最終的な答えはです。
ステップ 4.2
で代入して求めた点は、です。この点は変曲点となり得ます。
ステップ 5
変曲点となりうる点の周囲でを区間に分割します。
ステップ 6
区間から値を二次導関数に代入し、二次導関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
負の指数法則を利用して式を書き換えます。
ステップ 6.2.1.2
をまとめます。
ステップ 6.2.1.3
分数の前に負数を移動させます。
ステップ 6.2.1.4
を概算で置き換えます。
ステップ 6.2.1.5
乗します。
ステップ 6.2.1.6
で割ります。
ステップ 6.2.1.7
をかけます。
ステップ 6.2.1.8
負の指数法則を利用して式を書き換えます。
ステップ 6.2.1.9
をまとめます。
ステップ 6.2.2
をたし算します。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で二次導関数はです。これは負の値なので、の区間で減少します。
なのでで減少
なのでで減少
ステップ 7
区間から値を二次導関数に代入し、二次導関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
負の指数法則を利用して式を書き換えます。
ステップ 7.2.1.2
をまとめます。
ステップ 7.2.1.3
分数の前に負数を移動させます。
ステップ 7.2.1.4
を概算で置き換えます。
ステップ 7.2.1.5
乗します。
ステップ 7.2.1.6
で割ります。
ステップ 7.2.1.7
をかけます。
ステップ 7.2.1.8
負の指数法則を利用して式を書き換えます。
ステップ 7.2.1.9
をまとめます。
ステップ 7.2.2
をたし算します。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
で二次導関数はです。これは正の値なので、の区間で増加します。
なのでで増加
なのでで増加
ステップ 8
変曲点は、凹面の符号がプラスからマイナス、またはマイナスからプラスに変わる曲線上の点です。このときの変曲点はです。
ステップ 9