微分積分 例

導関数を用いて増減する場所を求める h(x)=(x+2)^7-7x-1
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
総和則では、に関する積分はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.1.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2.1.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.1.3
のすべての発生をで置き換えます。
ステップ 1.1.2.2
総和則では、に関する積分はです。
ステップ 1.1.2.3
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.4
について定数なので、についての微分係数はです。
ステップ 1.1.2.5
をたし算します。
ステップ 1.1.2.6
をかけます。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
をかけます。
ステップ 1.1.4
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.4.1
について定数なので、についての微分係数はです。
ステップ 1.1.4.2
をたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
二項定理を利用します。
ステップ 2.2.1.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.2.1
をかけます。
ステップ 2.2.1.2.2
乗します。
ステップ 2.2.1.2.3
をかけます。
ステップ 2.2.1.2.4
乗します。
ステップ 2.2.1.2.5
をかけます。
ステップ 2.2.1.2.6
乗します。
ステップ 2.2.1.2.7
をかけます。
ステップ 2.2.1.2.8
乗します。
ステップ 2.2.1.2.9
をかけます。
ステップ 2.2.1.2.10
乗します。
ステップ 2.2.1.3
分配則を当てはめます。
ステップ 2.2.1.4
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.4.1
をかけます。
ステップ 2.2.1.4.2
をかけます。
ステップ 2.2.1.4.3
をかけます。
ステップ 2.2.1.4.4
をかけます。
ステップ 2.2.1.4.5
をかけます。
ステップ 2.2.1.4.6
をかけます。
ステップ 2.2.2
からを引きます。
ステップ 2.3
方程式の各辺をグラフにします。解は交点のx値です。
ステップ 3
微分係数がに等しくなるような値はです。
ステップ 4
微分係数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 5
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 5.1
式の変数で置換えます。
ステップ 5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
をたし算します。
ステップ 5.2.1.2
乗します。
ステップ 5.2.1.3
をかけます。
ステップ 5.2.2
からを引きます。
ステップ 5.2.3
最終的な答えはです。
ステップ 5.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 6
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
をたし算します。
ステップ 6.2.1.2
を正数乗し、を得ます。
ステップ 6.2.1.3
をかけます。
ステップ 6.2.2
からを引きます。
ステップ 6.2.3
最終的な答えはです。
ステップ 6.3
で微分係数はです。これは負の値なので、関数はで減少します。
なのでで減少
なのでで減少
ステップ 7
区間から値を微分係数に代入し、関数が増加関数か減少関数か判定します。
タップして手順をさらに表示してください…
ステップ 7.1
式の変数で置換えます。
ステップ 7.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
をたし算します。
ステップ 7.2.1.2
乗します。
ステップ 7.2.1.3
をかけます。
ステップ 7.2.2
からを引きます。
ステップ 7.2.3
最終的な答えはです。
ステップ 7.3
で微分係数はです。これは正の値なので、関数はで増加します。
なのでで増加
なのでで増加
ステップ 8
関数が増加する区間と減少する区間を記載します。
で増加
で減少
ステップ 9